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distinguish between language and attentional 
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Abstract 

Background  Theoretical models posit abnormalities in cortico-striatal pathways in two of the most common neu-
rodevelopmental disorders (Developmental dyslexia, DD, and Attention deficit hyperactive disorder, ADHD), but it is 
still unclear what distinct cortico-striatal dysfunction might distinguish language disorders from others that exhibit 
very different symptomatology. Although impairments in tasks that depend on the cortico-striatal network, includ-
ing reinforcement learning (RL), have been implicated in both disorders, there has been little attempt to dissociate 
between different types of RL or to compare learning processes in these two types of disorders. The present study 
builds upon prior research indicating the existence of two learning manifestations of RL and evaluates whether these 
processes can be differentiated in language and attention deficit disorders. We used a two-step RL task shown to dis-
sociate model-based from model-free learning in human learners.

Results  Our results show that, relative to neurotypicals, DD individuals showed an impairment in model-free but not 
in model-based learning, whereas in ADHD the ability to use both model-free and model-based learning strategies 
was significantly compromised.

Conclusions  Thus, learning impairments in DD may be linked to a selective deficit in the ability to form action-out-
come associations based on previous history, whereas in ADHD some learning deficits may be related to an incapacity 
to pursue rewards based on the tasks’ structure. Our results indicate how different patterns of learning deficits may 
underlie different disorders, and how computation-minded experimental approaches can differentiate between 
them.

Keywords  Attention-deficit/hyperactivity disorder, Developmental dyslexia, Two-step task, Model-based vs. Model-
free reinforcement learning

Background
Developmental dyslexia (DD) and Attention-deficit/
hyperactivity disorder (ADHD) are two of the most com-
mon neurodevelopmental disorders. Dyslexia is char-
acterized by difficulties in acquiring reading, writing, 
and spelling skills, whereas ADHD is characterized by 
inattention, impulsivity, and hyperactivity symptoms. 
Traditionally, DD has been suggested to arise from 
phonological impairments [87] but domain-general 
accounts postulate sensory [46] or procedural learning 
impairments [65, 98, 99] in its etiology, thus providing 

*Correspondence:
Yafit Gabay
ygabay@edu.haifa.ac.il
1 Department of Special Education, University of Haifa, Haifa, Israel
2 Edmond J. Safra Brain Research Center for the Study of Learning 
Disabilities, University of Haifa, 199 Abba Khoushy Ave, Haifa, Israel
3 Department of Cognitive Sciences, University of Haifa, Haifa, Israel
4 The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
5 Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12993-023-00207-w&domain=pdf


Page 2 of 14Nissan et al. Behavioral and Brain Functions            (2023) 19:6 

a mechanistic account for the diverse range of linguistic 
and nonlinguistic symptoms observed in this disorder. 
ADHD has been associated with an executive function 
deficit [4], but a growing body of evidence points to key 
deficits in motivational/reward-related processes as well 
[7, 36, 37, 59, 69, 73, 77, 80, 89]. There is a high comor-
bidity between these two childhood neurodevelopmental 
disorders [105], including shared symptoms such as tem-
poral processing impairments [22, 94], executive function 
deficits [56], and procedural learning deficiencies [1, 110, 
34, 54, 57].

Despite decades of research, the neurocognitive basis 
of these two disorders is still highly debated and the rea-
son for the overlap is not yet fully understood. Recent 
advances in the research of comorbidity prompt a change 
from single deficit models to multiple models of develop-
mental neuropsychology. According to the multiple defi-
cit model [70], there are multiple probabilistic predictors 
of neurodevelopmental disorders across levels of analyses 
and comorbidity arises due to shared risk factors.

Interestingly theoretical and empirical findings in the 
research  of DD and ADHD implicate abnormalities in 
cortico-striatal pathways in both disorders [64, 99]. In 
DD, cortico-striatal  disruption [10, 51, 76, 103]  is pre-
sumed to affect the ability to acquire skills, procedures 
and stimulus–response associations acquired incremen-
tally [24, 65, 97, 98]. Since language learning critically 
depends upon these domain general abilities [21, 97], 
impaired striatal-based learning is presumed to disrupt 
the typical course of reading, writing, and spelling skills 
in those with DD. In ADHD anatomical and functional 
abnormalities within the striatum [11] have been sug-
gested to give rise to impulsive behaviors [45] and neu-
robiological models of ADHD posit that the deficit in 
striatal-based learning and memory is likely to arise 
from dopamine dysfunction within the neostriatum [78]. 
Recent evidence points to the right caudate as a shared 
neural substrate that is likely to be affected in both disor-
ders [64].

Reinforcement learning
The cortico-striatal network is responsible for reinforce-
ment learning (RL), the process in which individuals 
learn by trial and error to make choices that exploit the 
likelihood of rewards and minimize the occurrence of 
penalties [91]. Therefore, based on the notion of cortico-
striatal abnormalities in both disorders, RL is likely to 
be affected as well. Consistent with this assumption, RL 
deficits have been documented in DD [38, 42, 63, 72, 88] 
as well as in ADHD [35, 39, 49, 61, 95]. Impairments have 
been observed across RL tasks involving probabilistic 
feedback such as the Probabilistic Selection Task [35, 63] 
and the Weather Prediction Task [39, 42]. Furthermore, 

both DD and ADHD individuals are impaired in learn-
ing information integration categories [49, 88] which are 
believed to be acquired via striatal-based RL mechanisms 
[3]. Finally, both DD [38] and ADHD individuals [41] 
are impaired in probabilistic RL tasks when task condi-
tions favor striatal-based memory engagement rather 
than hippocampal-based memory engagement, similar 
to a pattern observed among patients with striatal dys-
function [30, 33]. Notably some studies revealed intact 
RL in ADHD, but such findings are mostly found is tasks 
in which feedback is deterministic [47, 61] or in studies 
using relatively simple tasks with low number of stimuli 
[14, 48, 58].

Model‑free vs. model‑based RL
Nevertheless, we still do not have a clear understanding 
of RL phenomena in both DD and ADHD or whether 
they are characterized by distinct/shared RL mecha-
nisms. Recent advances in the field of neurocompu-
tational models of cognition suggest that RL cannot 
be considered a unitary phenomenon. Rather, people 
employ different computational strategies when solving 
RL problems. One of these involves learning stimulus–
response contingencies which, after formation, are less 
sensitive to outcome and reward (Yin & Knowlton, 2006). 
A more prevalent account of learning describes goal-ori-
ented learning by focusing on learning outcome-action 
contingencies. Here, outcome-action contingencies can 
be based solely on recent history and presumed to arise 
computationally from model-free (MF) learning. The 
MF system learns the expected value of actions through 
prediction errors, which quantify the difference between 
the worth of actual and expected outcomes. In addition, 
action-outcome contingencies can be updated through 
model-based (MB) RL, which operates by learning a 
predictive model of multiple world states and action-
outcome probabilities, and updating action-outcome 
contingencies by incorporating this information and 
planning an action course by using this model to evaluate 
the different outcomes prospectively over multiple future 
world states [13, 15, 20, 107]. Here MB is likely to involve 
learning state values based on planning processes [100].

It has been shown that animals and humans use a 
mixture of RL processes [13, 15, 20, 107, 111]. Limiting 
computational resources by concurrent task [66, 67] or 
inducing stress [66, 67] hinders MB but not MF learning, 
somewhat in line with observations that learning based 
on stimulus–response associations is resistant to distrac-
tion [32, 109]. The ability to use MB strategies follows a 
developmental trajectory, as in children MF learning is 
more dominant than MB learning [15]. Furthermore, MF 
learning has been shown to be sensitive to core compo-
nents of executive functions, such as working memory 
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and cognitive control [66–68]. Finally, in psychiatric dis-
orders there is an imbalance between the ability to use 
MF vs. MB learning, such that those who have disorders 
associated with compulsivity and impulsivity tend to be 
impaired in their ability to use MB learning strategies 
[43, 102]. Neurobiologically, these two types of learning 
strategies are presumed to rely upon partially distinct 
neural substrates within the basal ganglia. It has been 
suggested that the dorsal lateral striatum subserves MF 
learning whereas the dorsal medial striatum underlies 
MB learning [44]. Despite this evidence, however, hip-
pocampal damage in humans hampers MB learning but 
not MF learning [101]. Furthermore, although basal gan-
glia dopamine levels affect stimulus-response learning 
and hence are likely to affect MF learning [29], recent 
evidence points to the possibility that basal ganglia dopa-
mine levels influence the ability to use MB but not MF 
learning strategies [82]. Notably, however, computational 
stimulations reveal that tonic dopamine levels influence 
the exploitation-exploration behavior trade-off when 
learning values is based on previous reinforcement his-
tory [50].

The present study
The purpose of the present study was to examine RL 
behavior in two of the most common yet very differ-
ent neurodevelopmental disorders. The theoretical and 
empirical body of research points to cortico-striatal 
abnormalities in both disorders (for a review see [99], 
which may lead to RL difficulties. RL has been studied 
in both ADHD and DD, but there has been no attempt 
to dissociate between different types of RL processes. 
Although a previous study revealed that methylpheni-
date increased risk taking in people with ADHD [62], we 
are aware of no studies that directly examined MB vs. MF 
RL learning in ADHD or DD. Likewise, there has been 
little attempt to compare RL in these neurodevelopmen-
tal disorders. The two-step task (TST; [13]) represents a 
recently popular approach to creating a task that differ-
entiates between MF learning and MB processes and has 
been tested in a substantial number of studies in humans 
(e.g., [18, 66, 67, 82, 102, 106, 107]). In this task, a partici-
pant is required to make two decisions, each taking him 
closer to the outcome stage where a reward is revealed. 
TST allows a differentiation between two types of com-
putations that may lead to impairments in reward-ori-
ented behavior. The first is the MF effect of outcome on 
decisions, by which actions that were rewarded may not 
be sufficiently enhanced or associated with reward, lead-
ing to a weak association between actions and rewards. 
The second is the MB effect in which the likelihood that 
a path will lead to a reward is learned. Here, participants 
may not incorporate the probabilities of moving from one 

state to the next into their planning and decisions in the 
first step. Such computations, MF association and MB 
planning, may be uniquely disturbed in DD and ADHD.

Krishnan et  al. [53] argued that cortico-striatal dys-
functions have been noted in both language and 
psychiatric disorders (such as ADHD) and raised the pos-
sibility that different computational models may explain 
the behavioral learning profile in each disorder. They 
specifically speculated that in developmental language 
disorders compared to psychiatric disorders (includ-
ing ADHD) learning impairments will be less apparent 
when learning state values (the overall reward that one 
expects when choosing the state as the starting point). 
However as learning state values is common in MF and 
MB learning [90], learning state values based on planning 
processes may distinguish between language and atten-
tional disorders. This notion is consistent with ample 
evidence showing that those with ADHD, but not those 
with DD, exhibit planning deficits and prefer immediate 
small rewards to delayed larger rewards [5, 16, 79, 85, 
95]. Therefore, one could predict that MB learning will 
be selectively disrupted in ADHD. On the other hand, 
deficits in the MF association are likely to be impacted 
in both disorders, as shown by evidence pointing to an 
impaired ability to learn reinforcement contingencies in 
DD based on recent history [42, 63, 88] and ADHD [35, 
39, 49, 61, 95].

Results
Data analysis
Power analysis
To determine whether the current study was adequately 
powered, we performed an a priori power analysis. Based 
on prior research, we computed an effect size of d = 0.65 
for the key group difference in model-based learning [82]. 
Using the software package G*Power [23] with power 
(1 − β) set at 0.80 and α = 0.05, one-tailed, we determined 
that a sample size of 30 per group was required. Thus, the 
current study was adequately powered.

Screening
We excluded individuals who stayed with the same 
response-key for more than 95% of the trials (0 were 
excluded) or had more than 25% implausible quick reac-
tion-times in either the first or second stage (< 150  ms; 
1dys, 4 ADHD were omitted). For the remaining 
respondents we omitted from analysis trials with implau-
sible reaction times (< 150  ms), and the first trial in the 
task (2.48%).

Modal based vs. model free learning
Each clinical population group (DD/ADHD) was tested 
against its own control group (neurotypcials matched to 
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the DD group and neurotypicals matched to the ADHD 
group, respectively) and each clinical and control group 
were matched by age, gender, and non-verbal intelli-
gence. Analyses were performed using R  (Team, 2020). 
Mixed-effect logistic regression models were conducted 
using the lme4 package [8]. For both experiments we 
used the following analyses:

To assess whether the groups differed in their ability 
to use MF vs. MB strategies, we evaluated the effect of 
events on each trial (trial n) on the first-step decision in 
the subsequent trial (trial n + 1). The two key predictors 
in trial n were whether or not a reward was received and 
whether this occurred after a common or rare transition 
to the second stage. We evaluated the impact of these 
events on the chance of repeating the same first-stage 
choice in trial n + 1. A pure model free agent is likely to 
repeat a first-stage choice that results in reward regard-
less of the previous transition type, predicting a positive 
main effect of reward on first-stage stay probabilities. 
A pure model-based agent, on the other hand, evalu-
ates first-stage actions in terms of second-stage alterna-
tives they tend to lead to. To examine the contribution 
of these two systems (i.e., MF vs. MB) we calculated a 
mixed effect logistic regression, where previous out-
come (rewarded vs. unrewarded), previous transition 
(rare vs. common), group (DD/ADHD vs. control), and 
all related interactions were entered as fixed effects pre-
dicting the probability that the participant would repeat 
the same choice (stay probability). We further included in 
this analysis (and in all further mixed-effects regression 
analyses), a random effect of participants on the intercept 
parameter [31].

As an additional measure of model-based abilities, we 
analyzed second-stage reaction times (RTs) as a function 
of transition (rare vs. common). A previous study showed 
that greater deployment of model-based strategies in the 
first stage led to shorter RTs after common vs. rare tran-
sitions [81]. Thus, the effect of transition on second-stage 
RTs can serve as an additional estimate for model-based 
involvement [12, 17]. We calculated a mixed effect linear 

regression, where transition (rare vs. common) and group 
(DD/ADHD vs. control) were entered as fixed effects pre-
dicting second-stage RTs. The regression included an 
additional random effect of participants on the intercept 
parameter.

Experiment 1: DD vs. controls
First stage MF vs. MB effects
Table 1 shows the results of this model and Fig. 1A illus-
trates the effects. We observed a significant main effect of 
previous outcome [χ2 (1) = 114.61, p < 0.001] on partici-
pants’ choices, showing that participants were more likely 
to stay with their first-stage choice when the previous 
trial was rewarded vs. unrewarded, across groups. This 
effect is indicative of model-free learning across groups. 
We further found that group modulated this effect, as 
evident by a significant previous outcome × group inter-
action [χ2 (1) = 8.08, p = 0.004], such that the DD group 
showed a smaller influence of previous outcome on 
first-choice stay probability. We also observed a signifi-
cant previous outcome × previous transition interaction, 
[χ2 (1) = 13.424, p < 0.001], indicative of model-based 
learning. The three-way interaction of reward × transi-
tion × group was not significant [χ2 (1) = 1.52, p = 0.21], 
suggesting that people with DD tended to evaluate first-
stage actions in terms of the second-stage alternatives 
associated with them, similar to how neurotypicals evalu-
ated them.

Second‑stage MB effect
Table 2 shows the results of this model and Fig. 1C illus-
trates the effects. We found a significant main effect of 
transition [χ2 (1) = 611.35, p < 0.001], where choices fol-
lowing a rare transition were slower than those follow-
ing common transitions. None of the remaining effects 
with group were significant. This observation is consist-
ent with the finding that those with DD did not differ 
from matched neurotypicals in their ability to use MB 
strategies.

Table 1  Results of the mixed-effects model of first-stage MF and MB effects

Chisq Df Pr (> Chisq) CI (95%)

Reward_oneback 114.62 1.00  < 2.2e-16 − 1.12 − 0.30

Transition_oneback 1.69 1.00 0.19 − 0.41 0.21

Group 1.63 1.00 0.20 − 1.04 0.49

Reward_oneback:transition_oneback 13.42 1.00 0.00 − 0.21 0.71

Reward_oneback:group 8.08 1.00 0.00 − 0.69 0.43

Transition_oneback:group 0.99 1.00 0.32 − 0.55 0.21

Reward_oneback:transition_oneback:group 1.52 1.00 0.22 − 0.42 0.77
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Experiment 2: ADHD vs. controls
First‑stage MF vs. MB effects
Table 3 shows the results of this model and Fig. 1B illus-
trates the effects. We observed a significant main effect 
of previous outcome [χ2 (1) = 92.603, p < 0.001], indica-
tive of model-free learning across groups. However, 
group modulated this effect, as evident by a significant 

Fig. 1  Performance of DD/ADHD and controls on the two-step task. A, B Y-axis represents the probability of repeating the same first-stage choice 
as a function of the transition in the previous trial (common versus rare) and of the outcome (rewarded versus unrewarded). C, D Y-axis represents 
second-stage reaction times (RTs) as a function of transition (rare vs. common) and group (DD/ADHD vs. controls)

Table 2  Results of the mixed-effects model of RT

Chisq Df Pr (> Chisq) CI (95%)

Transition 611.35 1.00  < 2e-16 126.10 232.26

Group 2.67 1.00 0.10 − 142.31 9.89

Transition:group 0.09 1.00 0.76 − 76.84 73.47

Table 3  Results of the mixed-effects model of first-stage MF and MB effects

Chisq Df Pr (> Chisq) CI (95%)

Reward_oneback 92.60 1.00  < 2.2e-16 − 0.39 − 0.12

Transition_oneback 4.17 1.00 0.04 − 0.29 0.05

Group 0.07 1.00 0.80 − 0.20 0.67

Reward_oneback:transition_oneback 15.97 1.00 0.00 − 0.15 0.35

Reward_oneback:group 8.08 1.00 0.00 − 0.53 − 0.15

Transition_oneback:group 0.10 1.00 0.75 − 0.47 0.02

Reward_oneback:transition_oneback:group 4.75 1.00 0.03 0.07 0.77
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previous outcome × group interaction [χ2 (1) = 8.077, 
p = 0.01], such that the ADHD group showed a smaller 
influence of previous outcome on first-choice stay prob-
ability. We also observed a significant previous out-
come × previous transition interaction [χ2 (1) = 15.967, 
p < 0.001], indicative of model-based learning. The triple 
interaction of reward*transition*group was significant 
[χ2 (1) = 4.755, p = 0.029], such that ADHD participants 
exhibited a reduced MB behavior (i.e., smaller previous 
outcome × previous transition interaction) compared to 
neurotypicals.

Second‑stage MB effect
Table 4 shows the results of this model and Fig. 1D illus-
trates the effects. We found a significant main effect 
of transition [χ2 (1) = 340.94, p < 0.001], where choices 
following a rare transition were slower than those fol-
lowing common transitions. Importantly, there was a sig-
nificant transition by group interaction [χ2 (1) = 29.551, 
p < 0.001], such that the transition effect (slower 
responses in rare compared to common states) was 
higher in the control group compared with the ADHD 
group, consistent with lower deployment of model-based 
strategies in the first stage for the ADHD compared to 
the control group. To test whether both groups exhib-
ited a transition  effect despite the differences in magni-
tude of the effect as indicated by the interaction, pairwise 
contrasts were calculated using the emmeans function 
from the emmeans package [60]. Two pairwise contrasts 
for the levels of Transition (rare vs. common) were cal-
culated for each group using the output of emmeans as 
input for the function contrast together with the Bonfer-
roni correction for multiple comparisons. The effect of 
transition (slower responses in rare cases compared to 
common states) was significant for both groups (ADHD: 
estimate = 88.8, SE = 27.9, z. ratio = 3.18, p = 0.0015; TD: 
estimate = 173, SE = 27, z. ratio = 6.410 p < 0.001).

General discussion
RL impairments have been implicated in both DD and 
ADHD [35, 39, 42, 49, 61, 63, 88, 95]. Here, we aimed 
to determine how different RL types (MF vs. MB) are 
affected in these two most common yet different neu-
rodevelopmental disorders, and whether shared and dis-
tinct learning profiles could be observed across the two 

disorders. Consistent with previous studies, neurotypical 
participants in both Study 1 and 2 exhibited a typical use 
mixture of MF and MB strategies in the two-step task. 
However, the performance of young adults with DD and 
ADHD differed relative to matched neurotypicals.

Our results show that compared to matched controls, 
individuals with DD and individuals with ADHD were 
less likely to repeat a choice that was rewarded com-
pared to neurotypicals. However, those with ADHD but 
not those with DD were less affected by MB considera-
tions in their decisions compared to neurotypicals. Sup-
porting this observation, those with ADHD but not those 
with DD exhibited reduced expectation violation effects, 
as reflected by a reduced RT difference between common 
and rare transitions as another indication of lower MB 
learning.

The observation of impaired model-based RL in ADHD 
is consistent with previous findings showing that the 
ability to use MB strategies is disrupted in disorders 
characterized by striatal dopamine dysfunction, such as 
Parkinson’s disease [82] and broadens it to populations 
that are also associated with striatal dopamine alterations 
and impulsive tendencies, such as ADHD. The results are 
especially consistent with previous findings showing tem-
poral discounting in those with ADHD [5, 16, 79, 85, 95]. 
The impaired ability of people with ADHD to use MB 
strategies could arise from several reasons: First, ADHD 
participants can have difficulties/are slower at generating 
complex internal models of task environments. Another 
possibility is that they are able to generate internal mod-
els but fail to exert the cognitive effort required to follow 
these mental models. Finally, it can be the case that MB 
learning is overwhelmed by the absence of automatic 
control routines that are normally provided by the MF 
system, rendering MB learning less effective in ADHD. 
The latter possibility, however, is inconsistent with the 
results of the DD group that demonstrated preserved 
MB learning despite impaired reward effect relative to 
neurotypicals. Future studies are undoubtedly needed in 
order to understand the reduced model-based behavior 
we observed in those with ADHD. The observation of 
impaired MF and MB learning in ADHD is consistent 
with neurobiological models of ADHD positing impaired 
RL mechanisms [35, 78, 96]. Although these models dif-
fer in their level of explanation [60] all assume that RL 
processes are likely to be impaired in ADHD. The pre-
sent findings add to this theoretical body of research by 
pointing to the possibility that RL deficits in ADHD can-
not be conceived as a unitary phenomenon but that two 
distinct types of RL processes are likely to be affected in 
this disorder. Despite differences in the ability to use MB 
strategies in the ADHD and DD groups, a similar previ-
ous-outcome main effect impairment was observed in 

Table 4  Results of the mixed-effects model of RT

Chisq Df Pr (> Chisq) CI (95%)

Transition 340.95 1.00  < 2.2e-16 35.26 142.36

Group 2.67 1.00 0.10 − 203.55 − 6.63

Transition:group 29.55 1.00 0.00 6.45 157.96
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both groups compared to neurotypicals. There are several 
possibilities for explaining the reduced previous-outcome 
main effect we observed in the two groups. First, such an 
effect could be explained by noise or an increased ten-
dency to explore the environment [92], which could rea-
sonably be associated with decreased use of MF strategies 
[28]. This possibility is consistent with recent findings 
showing that ADHD symptoms are negatively correlated 
with win-stay scores [74]. Indeed, computational stimu-
lations reveal an effect of altered dopamine levels on the 
exploration-exploitation trade-off. As such, altered dopa-
mine levels in ADHD could give rise to such trade-off, 
consistent with neurobiological models of ADHD [35, 
78, 96]. Notably, increased exploration in DD is less con-
sistent with recent findings showing similar win-stay and 
lose-shift scores in DD compared to neurotypicals in a 
probabilistic reinforcement learning task [63]. Another 
possibility is that the ability to learn reinforcement con-
tingencies based on the recent outcome history is more 
disrupted in neurodevelopmental disorders compared 
to typical populations [35, 39, 42, 49, 61, 63, 88, 95]. In 
this regard, some have speculated that MF learning has 
notable parallels with procedural learning and that hip-
pocampal-based learning is more equivalent with model-
based behavior [19]. Considering this, the present results 
resonate with theoretical models positing a procedural 
learning dysfunction in DD alongside intact hippocam-
pal-based learning abilities [65, 98, 99]. Furthermore, 
at first glance the observation of impaired MF and MB 
learning in ADHD is inconsistent with theoretical and 
empirical research positing impaired striatal-based learn-
ing in ADHD alongside spared hippocampal-based learn-
ing [6, 41, 45, 99]. However, MB learning is also likely to 
involve additional neural substrates and in particular the 
dorsolateral prefrontal cortex [86], which has been shown 
to be affected in ADHD [27]. Therefore, it can be the case 
that RL that rely on the dorsolateral prefrontal cortex as 
well are more likely to be affected in ADHD [49], rather 
than RL that are mostly associated with greater activation 
in hippocampal-based structures [41]. Further studies are 
required to explore this possibility.

A further major contribution of the present study to 
previous literature is the examination of types of strate-
gies employed by participants with DD during learning. 
The results of the present study suggest that learning 
deficits observed in DD might arise from impaired effi-
ciency in using MF-based strategies. Our study therefore 
highlights the importance of studying not only learning 
deficits in DD but also use of strategies that might have 
a role in them. Since rule-based learning may be analo-
gous to MB RL and procedural-based strategy may be 
analogous to model-free RL [68], the ability to use proce-
dural-based strategies should be selectively disrupted in 

DD consistent with recent observations (Gabay, Roark & 
Holt, [112]). Procedural learning plays an important role 
in language acquisition [97] including the ability to form 
sound categories [26, 55]. Impaired category learning via 
procedural learning mechanisms could therefore influ-
ence the ability of people with DD to form precise pho-
nological representations with negative effects on reading 
and phonological skills [40].

Taken together, the present findings reveal an interest-
ing dissociation between attentional and language devel-
opmental disorders. A common deficit in MF association 
may lead to learning impairments in both disorders. Such 
impairments may be related to attenuated effect or detec-
tion of outcome valance, or to problems in associating 
the reward with its preceding actions, especially linking 
it to actions that are twice removed from the outcome 
(first-stage decisions). However, the two disorders show 
different effects of MB mechanisms. While the DD group 
showed an intact MB representation of the path lead-
ing to outcome and the ability to dynamically use this 
information when making planning decisions, i.e., think-
ing ahead, ADHD participants did not incorporate this 
information. This may be because of inappropriate rep-
resentation of transition probability (i.e., of the path) or 
by failing to incorporate this information in decisions. 
This distinction between planning ahead and updating 
backwards may be a characteristic of other deficiencies 
between these two disorders, to be explored in future 
studies, and may call for different interventions. Such 
findings could be interpreted in light of the multiple defi-
cit model of developmental disorders, according to which 
every developmental disorder involves multiple cognitive 
risk factors [70]. Based on this notion, it may be the case 
that impairments in model-free RL may be one of the 
key risk factors for DD and ADHD [71] but that the MB 
learning deficit is related to the defining neuropsycholog-
ical features of ADHD but not of DD.

The two-step task is one of the most common 
paradigms that has been suggested to differentiate 
between  MF learning and MB processes  and has been 
tested in a substantial number of typical and impaired 
populations. Nevertheless, caution is warranted in inter-
preting behavioral performance in this task, as several 
modifications to this paradigm could affect the relative 
contribution of each system to behavior. For example, it 
has been shown that MF RL can produce behavioral pat-
terns in the two-step task that could be interpreted as 
MB RL [2]. Furthermore, providing explicit instructions 
led participants to make primarily model-based choices 
with little model-free influence [25]. However, in the cur-
rent study, we found that ADHD and DD showed distinc-
tive deviation from the behavior of control participants 
in the same task. This suggests that, to some extent, the 
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two-step task used here can differentiate between learn-
ing processes and provide an informative insight into 
how such learning processes are impaired in different 
neurodevelopmental disorders. It will be important to 
direct future investigations to examining variants of the 
two-step task in ADHD/DD in order to more precisely 
understand the nature of MF/MB processes in these neu-
rodevelopmental conditions.

To conclude, in the present study we compared differ-
ent types of RL across DD and ADHD participants and 
their matched controls. Our results show a shared cog-
nitive deficit in MF learning across participants with DD 
and ADHD relative to neurotypicals, alongside a deficit 
in MB learning that was selectively disrupted only in the 
ADHD group. These results suggest that distinct RL pro-
files can distinguish between language and attentional 
disorders.

Methods
Experiment 1: Participants with DD and neurotypical 
participants
Sixty-six university students (35 with DD, 15F and 31 
controls, 18F) took part in the study. All participants 
were university students in Israel, from families with 
middle to high socioeconomic status. All participants 
were screened for being native Hebrew speakers, had no 
history of neurological disorders and/or psychiatric dis-
orders, had normal or corrected-to-normal vision and 
normal hearing. The inclusion criteria for the DD group 
was (1) a formal diagnosis by a licensed clinician; (2) the 
absence of a formal diagnosis of attention deficit hyper-
activity disorder (ADHD) or a specific language impair-
ment; (3) a score below the clinical cutoff on  the adult 
ADHD self-report scale (ASRS); (4) a score below a 1SD 
local norm cut-off for  phonological decoding [108]; (5) 
a cognitive ability score within the normal range > 10th 
percentile  Raven score [75]. Based on these criteria, 
three participants with DD were excluded from the final 
sample. The control group was composed of individuals 
with no history of learning disabilities who exhibited no 
difficulties in reading (e.g., were above the reading cut-
off (non-word reading) and was matched in age, gender, 
and nonverbal intelligence (assessed by the Raven test) to 
the DD group. The Institutional Review Board of the Uni-
versity of Haifa approved the study (no. 18/099), which 
was conducted in accordance with the Declaration of 
Helsinki, with written informed consent provided by all 
participants. Participants received a compensation of NIS 
120 (approximately $37) for participating in the study.

Participants underwent a series of cognitive tests 
(Table  5) to evaluate basic cognitive ability, assessed by 
the Raven test [75] as well as tests of verbal short-term 

memory  (Digit span test; Wechsler, 1997 [104]), rapid 
automatized naming skills (RAN tests;[9], phonological 
processing (phoneme segmentation, phoneme deletion, 
and Spoonerism), reading skills  [83, 84], and attentional 
functions (ASRS; [52].

These tests were used to assert group differences in 
reading and phonological abilities. The results, shown 
in Table 6, indicate that the groups did not differ in age, 
cognitive abilities, or attentional skills, but compared to 
the control group the DD group displayed a profile of 
reading disability compatible with the symptomatology 
of developmental dyslexia. This group differed signifi-
cantly from the control group on both rate and accuracy 
measures of word reading and decoding skills. The DD 
group demonstrated deficits also in the three key pho-
nological domains: phonological awareness (Spooner-
ism, phoneme segmentation, phoneme deletion), verbal 
short-term memory (digit span), and rapid naming (rapid 
automatized naming).

Experimenet 2: Participants with ADHD and neurotypical 
participants
Sixty-five university students (35 with ADHD; 23F and 
30 controls; 22F) took part in the study. All participants 
were university students in Israel, from families with 
middle to high socioeconomic status.  All participants 
were screened for being native Hebrew speakers, had no 
history of neurological disorders and/or psychiatric dis-
orders, had normal or corrected-to-normal vision and 
normal hearing. The inclusion criteria for the ADHD 
group included (1) a formal diagnosis of ADHD by an 
authorized clinician; (2) positive screening for ADHD 
based on the adult ADHD self-report scale (ASRS; [52], 
namely a score >  = 51; (3) the lack of a formal diagnosis 
of a comorbid developmental disorder such as develop-
mental dyslexia; (4) a cognitive ability score within the 
normal range > 10th percentile  Raven score. The con-
trol group was composed of individuals with no history 
of learning disabilities who exhibited no difficulties in 
attentional skills (e.g., did not receive a positive score 
of ADHD based on the ASRS) and was matched in age, 
gender, and nonverbal intelligence (assessed by the Raven 
test) to the DD group. The Institutional Review Board of 
the University of Haifa approved the study (no. 18/099), 
which was conducted in accordance with the Declara-
tion of Helsinki, with written informed consent provided 
by all participants. Participants received a compensation 
of NIS 120 (approximately $37) for participating in the 
study.

All participants underwent a series of cognitive tests to 
evaluate general intelligence as measured by Raven’s SPM 
tests [75], as well as tests of attentional (ASRS; [52] and 
reading skills [83]. Details of the tests are presented in 
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Table 5, and the results are shown in Table 7. The groups 
did not differ significantly in age, intelligence, or reading 
skills. Naturally, the ADHD group differed significantly 
from the control group in the ADHD measures derived 
from the ASRS questionnaire.

Two‑step task
The task was similar to that employed in the study con-
ducted by [82]. Each trial was divided into two stages, 
each of which required a decision (see Fig. 2. In the first 

stage, a choice was made between two spaceships. Par-
ticipants were told that these spaceships could fly to one 
of two different planets. Each spaceship would land more 
often on a specific planet (i.e., common transition; 70% 
chance, yet could also land on the alternative planet in a 
minority of trials (i.e., rare transition; 30% chance. In the 
second stage, participants were asked to decide between 
two aliens. The selection of each alien led probabilisti-
cally to a reward determined by independently drifting 
Gaussian random walks [standard deviation (SD = 0.025] 

Table 5  Psychometric Tests

Ability Test Description

INTELLECTUAL ABILITY Raven
(Raven, Court, & Raven, 1992)

This test is designed to assess nonverbal intelligence. Par-
ticipants are required to choose an item from the bottom 
of the figure that will complete the pattern at the top of 
the figure. The maximum raw score for this test is 60. The 
test reliability coefficient is .9

VERBAL SHORT-TERM MEMORY Digit Span Wechsler Adult Intelligence Scale (WAIS-III; 
[104])

In this task, participants are required to recall the numbers 
presented auditorily in the order they were presented by 
the examiner. The maximum total raw score is 28. Task 
administration is discontinued after a failure to recall two 
trials with a similar length of digits. The test reliability coef-
ficient is .9

DECODING One-minute test of words and One-minute test of 
nonwords [83]

These tests aim to assess reading skills. The one-minute 
test of words contains nonvowelized words of an equiva-
lent level of complexity. The one-minute test of nonwords 
contains increasingly complex vowelized nonwords. Each 
test requires the participant to read aloud as quickly and 
accurately as possible within one minute. The maximum 
raw score for the one-minute test of words is 168. The 
maximum raw score for the one-minute test of nonwords 
is 86

PHONOLOGICAL PROCESSING Phoneme Deletion [9] In this test, participants are required to repeat nonwords 
without a specific phoneme as rapidly as possible. The 
nonwords are presented auditorily and vary in complexity, 
with a maximum total raw score of 25

Phoneme segmentation test [9] This measure assesses the participant’s ability to break a 
word into its component phonemes. For example, the 
word fo has two phonemes /f/ /o/. The maximum raw 
score is 16

Spoonerism Task (developed by Peleg & Ben-Dror) Participants are required to switch the first syllables of two 
word-pairs and then synthesize the segments to provide 
new words. The maximum raw score is 12

NAMING SKILLS Rapid Automatized Naming (RAN) [9] Participants are required to orally name items presented 
visually as rapidly as possible. The exemplars are drawn 
from a constant category (RAN colors, RAN categories, RAN 
numerals, and RAN letters). This requires retrieval of a famil-
iar phonological code for each stimulus and coordination 
of phonological and visual (color) or orthographic (letter) 
information quickly on time. The reliability coefficient of 
these tests ranges from .98 to .99

ATTENTION Adult ADHD Self-Report Scale (ASRS) An 18-item questionnaire based on the DSM-IV criteria for 
identifying ADHD in adults. The questions refer to the past 
6 months. The ASRS rating scale includes 0–5 rating (very 
often = 5 points, often = 4 points, sometimes = 3 points, 
rarely = 2 points, never = 1 point). A total score of more 
than 51 points is used to identify ADHD
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with a lower boundary of 0.25 probability of reward and 
an upper boundary of 0.75, such that the probability of 
reward from any particular second stage option changed 
very slowly from trial to trial. Because the transition from 
the first stage choice to the second stage planet was sto-
chastic, first stage choices allowed dissociating two learn-
ing strategies, either MF or MB.

Procedure
The experiment consisted of two sessions. Participants 
completed a background questionnaire at home and 
were invited to complete the cognitive battery tests. 
In the second session, participants completed the two-
step task. Sessions were conducted in a sound-attenu-
ated booth in front of a 14-in laptop monitor.

Table 6  Demographic and psychometric data of the DD and control groups

Measurement Control S.D Dyslexia S.D t value p

Age (in years) 25 2.828 25.29 3.579 − 0.354 0.724

Decoding

 Oral words recognition (accuracy) 118.838 15.132 71.967 22.443 9.641 .001

 Oral words recognition (speed) 120.193 15.142 75.838 24.992 8.451 .001

 Oral non-words recognition (accuracy) 63.903 11.344 25.258 9.774 14.369 .001

 Oral non-words recognition (speed) 67.935 11.132 41.387 12.776 8.723 .001

Naming skills

 Naming letters (time) 21.774 2.883 25.258 3.759 − 4.094 .001

 Naming objects (time) 32.548 4.945 41.032 7.259 − 5.378 .001

 Naming numbers (time) 17.419 2.566 21.612 2.917 − 6.009 .001

 Naming colors (time) 27.387 5.358 32.935 5.703 − 3.948 .001

Phonological processing

 Phoneme segmentation (time) 72.774 16.206 147.58 66.229 − 6.109 .001

 Phoneme segmentation (accuracy) 15.032 0.982 11.935 3.829 4.362 .001

 Phoneme deletion (time) 87.29 13.473 183.806 48.387 − 10.699 .001

 Phoneme deletion (accuracy) 23.612 1.819 19.322 5.344 4.231 .001

 Spoonerism (time) 109.064 22.196 270.193 113.185 − 7.778 .001

 Spoonerism (accuracy) 18.741 1.389 15.29 4.54 4.047 .001

Short verbal working memory

Digit spana 12.677 2.599 9.838 2.222 4.621 .001

Intellectual ability

 Raven testa 70.161 17.817 64.29 24.985 1.065 0.292

Attentional functions

 ASRSa 32.483 6.762 31.903 9.148 0.284 0.777

Table 7  Demographic and psychometric data of the ADHD and control groups

Measurement Control Std. Deviation ADHD Std. Deviation t value p

 Age (in years) 25.2 3.01 24.33 3.844 0.972 0.335

Decoding

 Oral words recognition (accuracy) 112.966 14.919 107.466 13.415 1.501 0.139

 Oral words recognition (speed) 114.966 14.48 109.766 13.317 1.448 0.153

Short verbal working memory

 Digit spana 11.633 2.326 9.833 2.52 2.875 0.006

Intellectual ability

Raven testa 61.033 18.601 54 29.058 1.117 0.27

Attentional functions

 ASRSa 32.666 6.686 68.766 7.85 − 19.174 .001
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