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A B S T R A C T   

Valence, the representation of a stimulus in terms of good or bad, plays a central role in models of affect, value- 
based learning theories, and value-based decision-making models. Previous work used Unconditioned Stimulus 
(US) to support a theoretical division between two different types of valence representations for a stimulus: the 
semantic representation of valence, i.e., stored accumulated knowledge about the value of the stimulus, and the 
affective representation of valence, i.e., the valence of the affective response to this stimulus. The current work 
extended past research by using a neutral Conditioned Stimulus (CS) in the context of reversal learning, a type of 
associative learning. The impact of expected uncertainty (the variability of rewards) and unexpected uncertainty 
(reversal) on the evolving temporal dynamics of the two types of valence representations of the CS was tested in 
two experiments. Results show that in an environment presenting the two types of uncertainty, the adaptation 
process (learning rate) of the choices and of the semantic valence representation is slower than the adaptation of 
the affective valence representation. In contrast, in environments with only unexpected uncertainty (i.e., fixed 
rewards), there is no difference in the temporal dynamics of the two types of valence representations. Impli
cations for models of affect, value-based learning theories, and value-based decision-making models are 
discussed.   

1. Introduction 

Imagine that your neighbors have a new puppy named Max. You 
usually experience pleasure and joy when playing with Max. However, at 
times when you consider approaching Max, you might experience no 
pleasure but still know that Max is friendly, cute, and you usually feel joy 
playing with him. That is, you have developed two types of represen
tations of Max being a positive event for you; one as a pleasant feeling 
and the second as knowledge about potential pleasantness. The repre
sentation of a stimulus as positive or (/and) negative is usually termed 
valence (Barrett, 2006b). The above example of Max implies two modes 
or two types of representations of valence: affective valence (experi
encing pleasure playing with Max) and semantic valence (knowing that 
playing with Max is usually fun) (e.g., Givon, Itzhak-Raz, Karmon- 
Presser, Danieli, & Meiran, 2019; Itkes, Kimchi, Haj-Ali, Shapiro, & 
Kron, 2017; Robinson & Clore, 2002b; Russell, 2003; Wang et al., 2021. 
See Itkes & Kron, 2019 for review.). From an evolutionary perspective, 
the dissociation between affective and semantic representations is 

potentially adaptive; it permits considering the values of events without 
the need to experience a full-blown affective response. For example, 
people can communicate the value of events with each other or plan 
future behaviors without the need to activate and experience an affec
tive response. 

In psychology and cognitive sciences, there is an accepted assump
tion that semantic knowledge and affect are distinct categories of the 
human mind. However, in the affective response, affect and knowledge 
are often interweaving. For example, processing of an event might 
involve simultaneous activations of both affect (feelings of fear from X) 
and semantic (knowing that X is dangerous) representations of its 
valence. In other words, semantic knowledge might be part of the input 
that is used in deciding whether to elicit an affective response or not (e. 
g., Russell, 2003; Sander, Grandjean, Kaiser, Wehrle, & Scherer, 2007, 
but see Zajonc, 1984). Moreover, some theories assume that conscious 
experience of emotions represents a conceptual act that, at least partly, 
involves semantic representations (Barrett, 2006a). The intermix be
tween affect and semantic knowledge in the affective response poses 
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theoretical and methodological difficulties for the emotion researcher. 
Theoretically, defining and formulating the differences between affect 
and knowledge is challenging. Empirically, the distinction between af
fective and semantic components in measures or tasks is far from 
obvious. 

The current study aims to compare how the two representations of 
valence are updated, given new information about the stimulus. To 
illustrate, imagine that your neighbors decided to train Max to be an 
aggressive guard dog. Such a change in Max’s behavior might affect your 
representations of Max’s valence. It can change your feelings toward 
him (experiencing more unpleasant feelings being with him) and/or 
your knowledge about him (knowing that Max is no longer cute and that 
it is not fun to play with him anymore). Using an associative learning 
paradigm, we systematically examine how variability in rewards 
(playing with Max generates different degrees of pleasure) and how a 
reversal of rewards (playing with Max became aversive) affect the 
temporal dynamics of the affective and semantic representations of 
valence. 

Studying the temporal dynamics of affective and semantic valence 
representations during associative learning has both a challenge and a 
promise. The challenge is to tease apart the two aspects of valence that 
are highly correlated (Itkes et al., 2017; Itkes & Kron, 2019). The 
promise is that the dissociation provides a new window into studying 
what is affect, semantic knowledge, the differences between the two, 
and their distinctive role in learning. In the following, we begin by 
theoretically distinguishing between affective and semantic represen
tations of valence. We discuss their relation to other theoretical dis
tinctions in the literature and briefly present the empirical challenge of 
making the dissociation between them and past work that supports this 
dissociation. Next, we describe the methodological framework of asso
ciative learning and discuss the main components of our analytical 
perspective: sources for prediction error, learning rates, competing 
conceptual learning frameworks, and reversal learning. We conclude 
with the present study’s outline. 

1.1. Semantic versus affective valence representations 

This work assumes that affective and semantic valence are different 
mental representations characterized by specific content and format 
(Cardinal, Parkinson, Hall, & Everitt, 2002; Gazzaniga, Ivry, & Mangun, 
2014).2 Affective valence is a property of affective response, a profile of 
time-sensitive physiological and psychological changes after exposure to 
a stimulus (Itkes et al., 2017). This profile of changes includes auto
nomic activation such as acceleration or deceleration of the heart rate (e. 
g., Hodes, Cook III, & Lang, 1985), sweat secretion (Codispoti, Ferrari, & 
Bradley, 2006; Lempert & Phelps, 2014), hormone secretion (Lewis, 
2005), skeletomotor changes as in facial behavior and body posture (e. 
g., Dael, Mortillaro, & Scherer, 2012; Houtveen, Rietveld, Schoutrop, 
Spiering, & Brosschot, 2001), and changes in feelings, the conscious 
experience of affect and emotion. We define the affective valence rep
resentation as a non–conceptual property of the transient affective 
response to a stimulus that indexes this stimulus as positive or negative 
(Itkes & Kron, 2019). 

The semantic representation of valence contains accumulated stored 

knowledge about the stimulus value (e.g., snakes might be dangerous 
and, therefore, are negative). Traditionally, accumulated knowledge can 
be divided into two broad categories: episodic and semantic (Schacter, 
Wagner, & Buckner, 2000; Tulving, 1983, 1993; Wheeler, Stuss, & 
Tulving, 1997). Episodic memory is knowledge related to a specific 
episode at a particular time and place (e.g., I met my friend yesterday at 
the shopping mall and felt happy to see him). In contrast, semantic 
knowledge refers to generalized conceptual knowledge about objects 
and events (e.g., meeting friends can make people feel happy). We argue 
that it is possible to think and reason about the valence of objects and 
events without simultaneous full-blown activation of response channels 
(Itkes & Kron, 2019). People can consistently categorize events ac
cording to the valence dimension (whether they are positive or negative) 
with no change in their experienced feelings, facial expressions, auto
nomic activation, or other components of the emotional response. 

1.1.1. Prior theoretical distinctions 
Our proposed working definitions for affective and semantic repre

sentations overlap with previous taxonomies. For example, affective 
versus semantic valence resembles the distinctions between the cold 
versus hot emotional process (Schaefer et al., 2003), the hot-emotional 
‘go’ system versus the cool-cognitive ‘know’ system (Metcalfe & Mis
chel, 1999), self-distance versus self-immersing perspectives (Kross & 
Ayduk, 2011), impulsive versus reflective systems (Deutsch & Strack, 
2004), cognitive appraisal versus feeling (Lazarus & Smith, 1988; 
Roseman & Smith, 2001), experiential versus non-experiential knowl
edge (Robinson & Clore, 2002a), and core affect versus affective quality 
(Russell, 2003, 2005). The conceptualizations most similar to our 
distinction are those of core affect versus affective quality (Russell, 
2003) and experiential versus nonexperiential knowledge (Robinson & 
Clore, 2002a). However, we use the terms affective and semantic 
valence representations and not previous taxonomies such as “core 
affect” and “affective quality” since previous terms are loaded with other 
assumptions and meanings that may not apply to our purposes (Itkes & 
Kron, 2019). 

Although the abovementioned theories suggest a clear distinction 
between affective and semantic aspects, this distinction is frequently 
absent or not well defined in other cases. The term “valence,” which is a 
building block in affective science (Barrett, 2006b) was initially used as 
semantic valence (for review, see Russell, 1980). For example, Osgood 
(Osgood, 1952; Osgood, Suci, & Tannenbaum, 1957) referred to valence 
as a latent dimension of semantic meaning. Later, Russell (1983) used 
the term valence to indicate the cognitive structure of affect in the 
language. Only later, the term valence was used as a title for a latent 
dimension of conscience experience of feelings (Carroll, Yik, Russell, & 
Barrett, 1999; Russell & Barrett, 1999) and in referring to explicit self- 
reports on feelings (e.g., Lang, Bradley, & Cuthbert, 1997). 

Similar unclarity exists with the term “value,” which is therefore 
considered an “umbrella term” (Ruff & Fehr, 2014). For example, one 
can use the term “value” to indicate the value of a primary reinforcer like 
juice upon its consumption (outcome value) (e.g., Kringelbach, O’Doh
erty, Rolls, & Andrews, 2003). In this case, value refers to the experi
ence, similar to our proposed affective valence. On the other hand, value 
can also be used to indicate the value of a stimulus in units of a more 
abstract currency, like money (goal value). It can even include the costs 
involved in specific options, like delayed consumption (decision value) 
(e.g., Green & Myerson, 2004). Notably, goal and decision values 
include an evaluation process beyond the direct experience of 
consuming the reinforcer. Therefore, they depart from our definition of 
affective valence representation and involve nonexperiential knowledge 
that we refer to as semantic valence representation (see Peters & Büchel, 
2010 for full details). 

2 We use the term “representation” to refer to a mental object that holds 
information and has specific content and format (Quilty-Dunn, 2016). Processes 
are operations done on the representations. Representations can carry infor
mation on the characteristics of external objects, i.e., their color, size, and also 
on their positivity or negativity, i.e., their valence. Importantly, we claim that 
the valence of a specific external object, i.e., the valence of Max, can be carried 
in two different mental representations with the same content but in different 
formats. The first is the affective valence representation, and the other is the 
semantic valence representation (see Itkes & Kron, 2019; Kron & Weksler, 
2022). 
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1.2. Empirical dissociation between affective and semantic valence 
representations 

Distinguishing between the two types of valence representations 
becomes even more challenging at the empirical level. It is not always 
obvious to determine whether a given task or measure is more indicative 
of affective or semantic valence representation. For example, self-report 
data on affective feelings often reflect semantic knowledge about 
valence, not actual feelings (Hamzani, Mazar, Itkes, Petranker, & Kron, 
2019; Itkes et al., 2017; Robinson & Clore, 2002b). Another example is 
tasks that involve cognitive conflict (i.e., congruency effects between 
response-relevant and response irrelevant features) that are termed 
“affective” because of the content of the stimuli, e.g., the Affective 
Simon Task (De Houwer, & Eelen, 1998). Although the Affective Simon 
task uses stimuli with emotional content, accumulating evidence sug
gests that the congruency effect reflects semantic conflict (e.g., Dusch
erer, Holender, & Molenaar, 2008; Itkes et al., 2017). 

Recent years produced a growing body of empirical work that pro
vides theoretical and empirical tools to dissociate and distinguish be
tween affective and semantic valence representations. We will shortly 
review part of it now. Itkes et al. (2017) and Wang et al. (2021) utilized a 
habituation protocol, i.e., repeated exposure to a stimulus, to tease apart 
semantic knowledge about the valence of a stimulus and the valence of 
the emotional response to the same stimulus. Itkes et al. (2017) showed 
that measures related to affective valence attenuate with repeated 
exposure to pleasant and unpleasant pictures. In contrast, measures 
related to semantic valence do not attenuate. In the same vein, Wang 
et al. (2021) demonstrated dissociation (pre and post-habituation) in the 
Late Positive Potential (LPP) and activation of brain structures between 
participants judging the affective valence and participants judging the 
semantic valence of the same affective pictures. 

Returning to the subject of self-reports, which is also relevant to the 
current study, Hamzani, Mazar, Itkes, Petranker and Kron (2019) 
compared the associations between self–reports and the physiological 
response (e.g., heart rate, SCR) to affective stimuli. The self-reports were 
generated by either feeling–focused instructions (i.e., encouraged par
ticipants to report their feelings and not knowledge) or knowledge- 
focused instructions (i.e., encouraged participants to report semantic 
knowledge and not feelings). They demonstrated a consistent advantage 
for feeling-focused over knowledge-focused instructions in predicting 
the physiological response to affective stimuli. These results strengthen 
the need to use separate self-reports for the two types of valence, as was 
done in the current study. 

1.3. The current experiments: The temporal dynamics of the semantic 
versus affective representations of valence during associative learning 

The current study examines a possible dissociation in the updating 
process of the semantic and affective valence representations of a 
stimulus. Therefore, a prerequisite for our study is a framework in which 
we can induce controlled and flexible updates in the stimulus’ value that 
can, later on, be analyzed. The habituation protocol (Itkes et al., 2017; 
Wang et al., 2021) is not suitable for our current purposes because the 
change in a stimulus’ value induced by habituation is limited to atten
uation only. However, we can induce and control the updating of a 
stimulus’ value by connecting this stimulus to changing outcomes under 
our control, i.e., by using the associative learning framework. 

During associative learning one stimulus, termed the “conditioned 
stimulus (CS),” is repeatedly associated with another stimulus, termed 
the “unconditioned stimulus” (US). The organism learns that the two 
events, i.e., the CS and the US, are related to one another and therefore, 
dynamically updates the valence representations of the CS based on the 
value of the associated US (e.g., Daw & O’Doherty, 2014; Mitchell, De 
Houwer, & Lovibond, 2009; Rangel, Camerer, & Montague, 2008). 
Using the associative learning framework, we can systematically 
manipulate the value of the CS by associating it with varying US values 

that we fully control. We can then check for dissociations in the updating 
process of the two valence representations, the affective and the 
semantic. 

Notably, in the current experiments, we used the associative learning 
framework to induce simultaneous updating of the valence representa
tions of two separate CS (“A” and “B”), each connected to a unique 
schedule of US. In each trial, the participants chose the CS with the more 
positive valence representations based on their accumulating experience 
of the two CS’s past contingencies with the varying US values. We will 
now elaborate on how we model the changes in the valence represen
tations of the CSs within the associative learning framework, namely, 
the Q-Learning algorithm. 

1.3.1. The Q-learning algorithm: Choices, predictions error and learning 
rate 

To model the changes in the valence representations of the CSs, we 
use a variant of reinforcement learning models (e.g., Rescorla & Wagner, 
1972; Sutton & Barto, 2018), namely, the Q-Learning algorithm (Wat
kins, 1989). A Q learning algorithm consists of three steps: a) Prediction 
of value, termed Q-Value, of all possible CS; b) Selection of the CS that 
maximizes the predicted reward c) Updating the Q-Values based on 
experience (Daw & Doya, 2006). Specifically, implementing a Q- 
Learning algorithm requires three computations: Prediction error, 
learning rule, and softmax selection rule. We will now explain and 
formalize each computation, starting with the prediction error. 

1.3.1.1. Prediction error. Suppose the participants choose the CS termed 
“A” in trial t. In this case, the prediction error associated with “A” in 
trial t is given by eq. (1): 

δt = rt − Q(A)t (1) 

δt - Prediction error associated with “A” in trial t. 
rt - Reward in trial t. 
Q(A)t - Predicted Q-Value of “A” in trial t. 
The prediction error is the discrepancy between expectations and 

actual events. Specifically, in our context, the prediction error is the 
deviation of the actual reward associated with a specific stimulus at a 
specific time from the predicted Q-Value of this stimulus. The learning 
process is driven by the prediction error, i.e., by the deviation of the 
actual rewards from the expected reward; if the reward matches 
expectation with no deviation, there is no error in prediction and no 
learning. The actual reward deviates from the expected due to two 
primary types of uncertainty: expected and unexpected (Soltani & 
Izquierdo, 2019). Expected uncertainty is the uncertainty in rewards 
attributable to the inherent variability of the given phenomenon. For 
example, the intensity of pleasure resulting from playing with Max is not 
fixed and changes from one encounter to the other. Notably, expected 
uncertainty can be thought of as noise that exists even when the un
derlying distribution of different outcomes is fixed over time. Unexpected 
uncertainty occurs due to changes in reward probabilities or magnitudes 
due to changes in the environment, like a reversal of previously learned 
stimulus-outcome contingencies. For example, the training of Max as a 
guard dog changed the underlying distribution of the possible intensity 
of pleasure resulting from playing with him. The experiments in the 
current study implement unexpected uncertainty (reversal) with or 
without expected uncertainty (variability of rewards), as will be detailed 
in section 1.3.4 below. 

1.3.1.2. Learning rule. The Q-Learning algorithm postulates that 
learning occurs only when the predicted value, Q(A)t, of “A” in trial t is 
different from the actual reward in trial t, i.e., when the prediction error 
is not zero. In this case, the predicted Q-Value of “A” should be updated 
to reflect this prediction error. Eq. (2.a) formalizes the learning rule, i. 
e., the update of the predicted Q-Value of face “A” that is performed in 
trial t, given the prediction error associated with face “A” in trial t (eq. 
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1): 

Q(A)t+1 = Q(A)t + α⋅δt (2.a) 

Q(A)t+1 - Predicted Q-Value of “A” in trial t + 1. 
Q(A)t - Predicted Q-Value of “A” in trial t. 
α - Learning rate; 0 < α < 1. 
δt - Prediction error associated with “A” in trial t 
On the other hand, because the CS termed “B” was not chosen in trial 

t, there was no reward and no prediction error connected to it in trial t. 
Therefore, the learning rule for “B” is given by eq. 2.b, i.e., no change in 
“B” predicted Q-Value in trial t + 1: 

Q(B)t+1 = Q(B)t (2.b) 

Q(B)t+1 - Predicted Q-Value of “B” in trial t + 1 
Q(B)t - Predicted Q-Value of “B” in trial t 
The decision to what degree to update the stimulus’ Q-Value, given a 

specific prediction error, reflects an exchange between relying on the 
long versus short-term rewards history. The learning rate can be 
considered to control the weight given to the long-term rewards’ history 
versus the current reward and the resulting prediction error. One 
extreme option is to completely ignore the prediction error, i.e., to 
ignore the present reward and base the current Q-Value of the stimulus 
only on the long-term rewards history. The other extreme option is to 
sharply update the stimulus’ Q-Value by the total size of the current 
prediction error. Usually, the learning rate balances the above- 
mentioned extreme options, i.e., when updating the stimulus’ Q- 
Value, the prediction error is considered, but not in its full scale (e.g., 
Gläscher & Büchel, 2005; Niv, 2009). To sum, the learning rate is a 
crucial concept in the current study because it controls the time it takes 
for the stimulus’ Q-Value to be updated, i.e., it controls the temporal 
dynamics of the valence representation during reinforcement learning. 

1.3.1.3. Softmax selection rule. Finally, the Q-Learning algorithm can be 
used to predict the selection of the CS (“A” or “B”). The softmax se
lection rule aims to maximize the predicted reward (eq. 3): 

P(A)t =
exp
(
βQ(A)t

)

exp
(
βQ(A)t

)
+ exp

(
βQ(B)t

) (3) 

P(A)t - The probability of choosing “A” in trial t 
Q(A)t - Predicted Q-Value of “A” in trial t 
Q(B)t - Predicted Q-Value of “B” in trial t 
β - Rate of exploration 
Notably, the softmax selection rule estimates the learner’s balance 

between two complementary goals. The first is the exploitation of pre
viously acquired knowledge of the best action. The second is exploring 
new actions that might prove beneficial in proportion to their utility. 
The parameter beta controls the rate of exploration. As beta decreases, 
selections become more random (i.e., explorative). As beta increases, 
selections become more deterministic (i.e., exploitative). 

1.3.2. Competing conceptual learning frameworks 
As elaborated above, our inquiry into the potential dissociation be

tween the temporal dynamics of the affective and sematic valence rep
resentations is made using the Q-Learning algorithm, which is based on 
the critical concepts of Q-Values, prediction error, and learning rate (α). 
However, the Q-Learning algorithm can be implemented in two 
competing conceptual learning frameworks: Common Accumulation and 
Parallel Accumulation. There is a single Q-Learning algorithm in the 
Common Accumulation framework, whereas three parallel Q-Learning 
algorithms exist in the Parallel Accumulation framework. Fig. 1 contains 
a mechanistic description of the two alternative frameworks for imple
menting the Q-Learning algorithm, as will now be elaborated. 

Fig. 1. Alternative conceptual learning frameworks connecting the choices, the affective valence representations, and the semantic valence representations. 1.A. 
Common Accumulation. According to the Common Accumulation framework, there is a single learning process with a single learning rate, which governs the choices. 
The affective and semantic valence representations are based on components of this single learning process, i.e., both types of valence representations can be based on 
either the Q -Values or the Prediction error. 1.B. Parallel Accumulation. According to the Parallel Accumulation framework, there are three parallel learning processes, 
one for the choices and one for each type of valence representation. The affective valence representation is based on the Q-Values of the affective learning process, 
and the semantic valence representation is based on the Q-Values of the semantic learning process. 
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1.3.2.1. Common accumulation framework. According to the Common 
Accumulation framework, there is a single Q-Learning process, to be 
termed the Choice Learner, in which the Q-Values of the two CSs (“A” and 
“B”) are learned based on trial-by-trial rewards and a single learning rate 
(αChoices). These Q-Values, and the rate of exploration (β) govern the 
trial-by-trial choices made by the participant. The affective and semantic 
valence representations are based on components of this single learning 
process. Notably, this framework is parsimonious because it requires the 
participants to form only one series of trail-by-trial Q-Values for each CS 
(See Fig. 1.A). 

Past research suggests the semantic valence representations to be 
based on the Q-Values (Hertz, Bahrami, & Keramati, 2018), whereas the 
affective valence representations to be based on the prediction error 
(Rutledge, Skandali, Dayan, & Dolan, 2014). However, it should be 
stressed that our theoretical distinction between affective and semantic 
valence representations also allows for other options. We argue that the 
difference between the affective and semantic valence representation is 
in their format and not their content. Therefore, we can not preclude in 
advance reliance of the affective valence representation on Q-Values or 
reliance of the semantic valence representation on prediction error. 

1.3.2.2. Parallel accumulation framework. According to the second 
learning framework, semantic and affective valence representations are 
not simply read-out of different latent variables of the Choice Learner but 
are formed directly and independently from the experienced contin
gencies between the chosen CSs and the USs (points/money in our task). 
This assumption results in three parallel accumulation, or Q-learning, 
processes. The first is precisely the same as in the Common Accumulation 
framework, i.e. the Choice Learner, that governs the trial-by-trial choices 
made by the participant. In addition, the Parallel Accumulation frame
work assumes the existence of two additional accumulation processes, 
one for each type of valence representation, i.e., the Semantic Repre
sentations Learner and the Affective Representations Learner. The semantic 
valence representations are based on the Q-Values from the Semantic 
Representations Learner, and the affective valence representations are 
based on the Q-Values from the Affective Representations Learner. 
Notably, the two additional Q-Learning processes rely on the same his
tory of rewards associated with each CS, and the same series of choices. 
Therefore, the resulting affective and semantic valence representations 
are not independent. However, the two Q-Learning processes may have 
different learning rates (αSemantic, αAffective), i.e., different weighting of 
short and long-term history of rewards, resulting in different temporal 
dynamics of the affective and semantic valence representations (See 
Fig. 1.B). 

This framework might seem less likely because it requires more re
sources to keep track of three series of trail-by-trial Q-values for each CS. 
However, there is evidence for similar frameworks with multiple rep
resentations that keep track of the same underlying process in different 
timescales (e.g., motor adaptation - Smith, Ghazizadeh, & Shadmehr, 
2006; cognitive functions -Soltani, Murray, Seo, & Lee, 2021). 

To sum up, according to the Common Accumulation framework, the 
source for possible differences in the temporal dynamics of the two 
valence representations is their dependency on two different compo
nents of the same Q-Learning algorithm, i.e., the Choice Learner. On the 
other hand, according to the Parallel Accumulation framework, the 
temporal dynamics of the two valence representations might differ due 
to possible different learning rates of the Semantic Representations 
Learner and the Affective Representations Learner. We formally compared 
the two frameworks as part of our analysis (see section 2.1.6 for details). 

1.3.3. Reversal learning 
The main aim of the current study is to compare the temporal dy

namics of affective and semantic representations of valence. To this aim, 
we implement a specific associative learning paradigm: reversal 
learning. The reversal learning paradigm (Izquierdo, Brigman, Radke, 

Rudebeck, & Holmes, 2017) assesses learning flexibility (in our case, 
learning rate) in the face of unexpected uncertainty, i.e., change in a 
stimulus’ value that cannot be attributed to noise. A typical reversal 
learning session includes an acquisition phase immediately followed by 
a reversal phase. Two (or more) stimuli are presented during the 
acquisition phase, each connected to a different schedule of Uncondi
tioned Stimulus (US) (e.g., Atlas, Doll, Li, Daw, & Phelps, 2016; M. R. 
Delgado, Labouliere, & Phelps, 2006; Mertens & De Houwer, 2016; 
Schiller, Levy, Niv, LeDoux, & Phelps, 2008). During the acquisition 
phase, the participants learn the value (valence) of each CS. For 
example, in fear reversal learning, there are two Conditioned Stimuli 
(CS). One CS is always (or partly) connected to an aversive stimulus such 
as an electric shock, and therefore it is marked with a “+” sign (CS+). 
The second CS is never connected to an aversive stimulus, and therefore 
it is marked with a “-” sign (CS-). 

The acquisition phase is followed by a (usually uninformed) reversal 
phase. During the reversal phase, the previously learned schedule of US 
connected to each CS is reversed. Each CS is now connected to the 
alternate schedule of the US. Continuing the fear reversal learning 
example, the former CS+ (new CS-) is no longer paired with the aversive 
US in the reversal phase. Instead, the previous CS- (new CS+) is now 
paired with the aversive US (e.g., Atlas, 2019; Costa, Bradley, & Lang, 
2015; Schiller & Delgado, 2010). Notably, the inherent complexity of 
the reversal learning paradigm, i.e., the need to adjust the valence of the 
two CS stimulatingly, is ideal for comparing the two types of valence 
learning rates. 

1.3.4. The current experiments 
Two experiments systematically investigated the learning rates of the 

affective and semantic representations of valence during reversal 
learning. Experiment 1 compared the learning rates in an experimental 
environment that involves both expected (i.e., variability of the mone
tary rewards) and unexpected (i.e., reversal) uncertainty. Experiment 2 
examined the potential moderation of expected uncertainty on the effect 
of unexpected uncertainty (reversal) on the learning rates. Preuschoff 
and Bossaerts (2007) and Diederen and Schultz (2015) showed that in 
cases involving expected variability, it is advantageous to adjust the 
prediction error based on the expected reward variability. The higher 
the variability, the smaller the prediction error and vice versa. This 
adjustment is computationally translated to a lower rating rate, the 
higher the variability of the rewards. Experiment 2 enabled us to check 
for the existence of this adjustment in the learning rates of the semantic 
and affective valence representations. 

2. Experiment 1 

In experiment 1, we examined the effect of unexpected uncertainty 
(reversal) and expected uncertainty (variability of rewards) on the 
learning processes of the two types of valence representations for the CS. 
In this experiment, the participants made 80 choices of one out of two 
neutral faces of women (face “A” and face “B,” the CSs). Each face was 
connected to a unique schedule of variable monetary rewards (the US), 
unknown to the participants, such as one face was more profitable than 
the other. After 40 trials, the contingencies of the monetary rewards to 
the faces were reversed without informing the participants, turning the 
second face into the profitable choice. Notably, in each trial, after 
choosing the face and receiving the monetary reward the participants 
made feeling-focused (i.e., affective valence) and knowledge-focused (i. 
e., semantic valence) self–reports on the valence of the chosen face. 

2.1. Method and material 

2.1.1. Participants 
Forty-four students from the University of Haifa [13 male, aged 26.2 

± 5.45 (mean ± SD); 33 female, aged 21.6 ± 2.3] participated in the 
first experiment. The study was approved by the University of Haifa’s, 
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Faculty of Social Sciences Research Ethics Committee (Project ID 
Number: 318/18). All participants were screened for neurological dis
orders. Participants received course credit or were paid around NIS 40 
(~$12) for their participation. In addition, the participants received a 
bonus of up to NIS 30 (~$9), depending on the rewards in two randomly 
selected trials. We excluded nine participants from the study due to lack 
of learning3 or lack of variance in their self-report ratings.4 The final 
sample size for the analysis was n = 35. Because we are interested in the 
possible differences between the affective and semantic valence learning 
rates, i.e., a within-subject design, and assuming a power of 80%, a 
sample size of n = 35 should capture a medium effect size, i.e., Choen’s 
d of around 0.5 (Erdfelder, FAul, Buchner, & Lang, 2009). 

2.1.2. Conditioned stimuli (CSs) 
The CSs were two neutral faces of women (face “A” and face “B”). We 

randomly selected a unique pair of faces to be displayed to each 
participant out of a pool of four women’s faces, all taken from the 
Karolinska Directed Emotional Faces (KDEF) database (Lundqvist, Flykt, 
& Öhman, 1998). We used the “without hairline” version of the KDEF 
faces, validated in Goeleven et al.’s study (Goeleven, De Raedt, Leyman, 
& Verschuere, 2008). Also, the selected faces received very similar rat
ings in several criteria, including attractiveness, emotional intensity, 
and valence, in Garrido and Parda’s study on KDEF (Garrido & Prada, 
2017). To verify that the participants perceived the two faces we 
randomly chose for them (face “A” and face “B”) as equally neutral at the 
beginning of the experiment, we created a database composed of all the 
initial self–ratings the participants gave in both experiments. We then 
ran two ANOVAs, one for the semantic valence initial self-reports and 
one for the affective valence initial self-reports, and checked for an effect 
of face identity on the ratings. In both ANOVAs, the effect of the face 
identity on the ratings was insignificant (p-values of 0.64 and 0.29 for 
the semantic and affective valence, respectively, see Supplementary 
Table 1). 

2.1.3. Feeling-focused self-reports 
Based on Itkes et al. (2017), the participants rated the affective 

valence of the CSs using two unipolar scales, one for positive feelings 
and the second for negative feelings. Both scales have the appearance of 
a volume graph ranging from low to high (coded 0-no feelings to 8-high, 
see Supplementary Fig. 1). Because the CS was a woman’s face, the 
participants were instructed to differentiate between the feelings the 
woman in the image might have and their feelings while looking at the 
woman, and to report only their feelings. On the positive scale, the 
participants were instructed to rate whether they felt feelings of plea
sure, happiness, or any other pleasant feeling while looking at the CS. If 
they did not feel anything pleasant, or were unsure if they felt something 
pleasant, they were instructed to report “0”. Only if they were sure they 
felt feelings of pleasure, happiness, or any other pleasant feeling while 
looking at the CS, they were instructed to rate the experienced intensity 
of their positive feelings from 1 (low) to 8 (high). On the negative scale, 
the participants were instructed to rate whether they felt feelings of 
displeasure, sadness, or any other unpleasant feelings while looking at 
the CS and if so, to rate the experienced intensity of their negative 
feelings. We calculated the affective valence of the CS as the difference 
between the positive and negative ratings, resulting in a measure 
ranging from − 8 to 8. (For a similar transformation, see Haj-Ali, 
Anderson, & Kron, 2020; Larsen, Norris, & Cacioppo, 2003; Kron, 
Goldstein, Lee, Gardhouse, & Anderson, 2013). 

Importantly, before reporting their feelings on the positive and 
negative feeling scales, the participants were presented with a scale of 
“general” feelings. In this scale, the participants were instructed to 
indicate whether they had any feelings while looking at the CS and, if so, 
to rate the experienced intensity of their feelings. This scale makes the 
participants contemplate whether they indeed felt something before 
rating their positive and negative feelings. Evidence for the validity of 
this set of scales as a measure of affective valence can be found in Itkes 
et al. (2017). 

2.1.4. Knowledge-focused self-reports 
We measured semantic evaluations by requesting the participants to 

report their expectations regarding the connections between the CS and 
the US, coupled with confidence in this expectation. Specifically, we 
asked them to evaluate what they thought would happen, further 
selecting a specific alternative (CS). The options ranged from “I will 
certainly lose money” (coded as 0), through the option “I do not know 
what will happen” (coded as 4), to the option “I will certainly receive 
money” (coded as 8). (See Supplementary Fig. 2 for a similar scale used 
in experiment 2). A comprehensive analysis of this measure’s validity 
can be found in Boddez et al. (2013). Additional support for this measure 
can be found in Hertz et al. (2018). 

2.1.5. The reversal-learning task 
The reversal task consists of two phases of 40 trials each: an acqui

sition phase followed by a reversal phase. During the whole task, the 
participants made 80 sequential choices of one of two neutral faces of 
women, face “A” and face “B,” which served as the Conditioned Stimuli 
(CS) (see Fig. 2). We paired each face with a different pseudo-random 
schedule of monetary reinforcements, unknown to the participants, 
which served as the Unconditioned Stimuli (US).5 During the first 40 
trials that composed the acquisition phase, choosing face “A” yielded an 
average profit of NIS 10 (~ $3). Crucially, the actual amounts varied 
uniformly between NIS 5 and 15 (SD ~ 3). Selecting face “B” yielded an 
average break-even (zero) result. Again, exact amounts varied uniformly 
between NIS -5 and 5 (SD ~ 3). During the last 40 trials, the reversal 
phase, we reversed these contingencies without informing the partici
pants. In 60% of the 80 trials, the participants could choose one of the 
two faces (i.e., free–choice trial, instrumental conditioning). In the rest 
of the trials, the participants were obligated to select one of the faces (i. 
e., forced-choice trial, classical conditioning). Before their first choice, 
the participants made an initial self-rating of faces “A” and “B”’s se
mantic and affective valence to ensure that the participants indeed 
perceived the two faces to be used as the CS (i.e., face “A” and face “B”) 
as equally neutral. The internal order of the self-report ratings was 
counterbalanced.6 (See Supplementary Table 2 for a summary of the 
features of experiment 1 and experiment 2.) 

The free-choice trials started with the presentation of the two faces 
(face “A” and face “B”) on a horizontal line in the middle of the screen. 
We randomly selected the position of the faces (the left side or the right 
side) in each trial. After the participant made her choice, The chosen CS 
alone (4 s.), the chosen CS and the US together (2 s.), and the chosen CS 
alone (5 s.) were presented. Then, the participants made self–reports on 
the valence of the chosen face. (See Fig. 2 for a similar sequence used in 
experiment 2). 

The forced-choice trials occurred in the second and fourth trial of 
each block. They had the same sequence as the free-choice trial 
described above, with one difference. One of the faces was marked with 
a big “x” on the choosing screen, indicating that the participant was not 

3 The percentage of free choices of the profitable face (i.e., face “A”) during 
the second half of the acquisition phase was below chance level (50%).  

4 Defining 16 clusters of self-reports (4 scales [semantic, feelings, positive, 
negative] * 2 phases [Acquisition, Reversal] * 2 CS [Face A, Face B]). Calcu
lating the variance in each of the defined clusters for each participant. 
Excluding participants with zero variance in >20% of the clusters. 

5 We used two different pseudo-random schedules for each face to avoid the 
possibility that the exact order of reinforcements could explain the results.  

6 We used four different versions (a - Semantic, Feelings, Positive, Negative, b 
- Semantic, Feelings, Negative, Positive, c - Feelings, Positive, Negative, Se
mantic, d - Feelings, Negative, Positive, Semantic). 
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allowed to choose it, leaving her with only one face out of two to 
“choose.” In each block, one of the forced-choice trials forced the 
participant to choose face “A,” and the other forced her to choose face 
“B.” 

2.1.6. Analysis strategy 
Our primary research question investigated the temporal dynamics 

of the two representations of valence. To meet this aim, we first per
formed an illustrative comparison of the reliance of the two types of 
valence on the reward history by cross-correlation analysis. We then 
implemented three Q-Learning processes for each participant’s tri
al–by–trial data using the Q-Learning algorithm (Watkins, 1989): the 
Choice Learner, the Semantic Representations Learner and the Affective 
Representations Learner. Next, we compared two competing alternatives 
for a conceptual framework of learning. According to the first alterna
tive, the Common Accumulation framework, there is a single Q-Learning 
process, the Choice Learner, with a single learning rate (Fig. 1.A). The 
affective and semantic valence representations are based on components 
of this single Q-Learning process. According to the second alternative, 
the Parallel Accumulation framework, there are, in addition to the Choice 
Learner, two separate Q-Learning processes, the Semantic Representations 
Learner and the Affective Representations Learner, one for each type of 
valence representation (Fig. 1.B). Notably, only this framework allows 
for different learning rates for each type of valence representation. 
Lastly, we compared the learning rates from the Semantic Representations 
Learner and the Affective Representations Learner under the framework 
that received more support from our data, i.e., the Parallel Accumulation 
framework. 

2.1.6.1. Cross-correlation analysis. We first performed an illustrative 
comparison of the reliance of the two types of valence on reward history 
using cross-correlation analysis. The cross-correlation analysis is based 
on the notion that the learning rate controls the weight given to the 

history of rewards versus the current trial’s reward in determining the 
current valence of the CS. The lower the learning rate, the more weight 
given to the reward history, i.e., we expect a higher correlation between 
the current trials’ valence and past rewards (USs). On the other hand, 
the higher the learning rate, the less weight given to the reward history, 
i.e., we expect a lower correlation between the current trials’ valence 
and past rewards (USs). Based on these considerations, we checked for a 
correlation between the self-report of the current trial’s valence and the 
current trial’s reward (0–lag cross-correlation). The correlation calcu
lation was done on the individual participant’s level (N = 35), resulting 
in a distribution of 35 correlations, each based on the correlation be
tween 80 ratings and rewards connected to a specific participant. We 
then conducted a Fisher’s Z transformation on the correlations. We did 
the same procedure to check the correlation between the self-report of 
the current trial’s valence and the reward in different lags, e.g., the last 
trial where this option was chosen (1–lag cross-correlation). We then 
formally compared the distributions of two extremes, i.e., the 0–lag and 
3–lag cross-correlations (after Fisher’s Z transformation), for each 
valence type, using paired t-tests. The lower the learning rate, the more 
we expect the 0–lag and 3–lag cross-correlations to be the same. On the 
other hand, the higher the learning rate, the more we expect the 0–lag 
cross-correlation to be higher than the 3-lag cross-correlation. 

2.1.6.2. Computational modeling. We implemented three Q-Learning 
processes for each participant’s trial–by–trial data: the Choice Learner, 
the Semantic Representations Learner and the Affective Representations 
Learner. The Computational modeling was done via a Q-Learning rein
forcement learning algorithm (Watkins, 1989). We, therefore, imple
mented computations of the prediction error (eq. 1) and the learning 
rule (eqs. 2.a and 2.b) detailed in section 1.3.1. For the Choice Learner 
the algorithm also included the softmax selection rule (eq. 3). We will 
now complete our description of the computational modeling by de
tailing the different optimization and parameter estimation processes 

Fig. 2. Trial sequence. 2.a. The participants choose between two neutral women’s faces, face “A” and face “B.” Next, the selected face appeared for 4 s., followed by a 
presentation of the reward (gain or loss of points) for 2 s. The selected face appears again for 5 s. 2.b. The same sequence as in 1.a., but one of the faces is marked with 
X and the participant cannot choose it. 2.c. The participants perform the two types of valence self–reports, semantic (knowledge-focused) and affective (feeling- 
focused), regarding the chosen face, with no time limit. 
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used in each Q-Learning process. 
2.1.6.2.1. The choice learner. For the Choice Learner (Fig. 1.A), we 

used each participant’s trial-by-trial choices and rewards data and the Q- 
Learning algorithm (i.e., eqs. 1 to 3) to fit a Q-Learning process to the 
choices made by each participant. In this learning process, the fitting 
was done by optimizing the log-likelihood of the probability of choices, 
given by eq. 3. The resulting parameters from this Q-Learning process 
are alpha and beta for each participant. In addition, the Choice Learner 
provides estimated trial-by-trial Q-Values and prediction errors for each 
participant, which could be later used to directly compare the two 
competing learning frameworks (see section 2.1.6.2.4). 

2.1.6.2.2. The semantic/affective representations learner. For the Se
mantic Representations Learner and the Affective Representations Learner 
(Fig. 1.B), we used a variant of the Q-Learning algorithm (detailed in 
section 1.3.1) that was fitted to the knowledge-focused and feeling- 
focused self-reports instead of the choices. Therefore, this variant 
included only the prediction error (eq. 1) and the learning rule (eq. 2.a 
+ 2.b) and did not include the softmax decision rule (eq. 3) and esti
mation of the rate of exploration (β). In addition, this variant used a 
different error function for the parameter estimation. More specifically, 
fitting the Semantic Representations Learner and the Affective Represen
tations Learner to the knowledge-focused and feeling-focused self-reports 
data was performed by minimizing the square error of distance be
tween the self-ratings data and the Q-Values derived from the algorithms 
(a different set of Q-Values for each Q-Learning process). 

The Semantic Representations Learner square error is given in eq. (5): 

errorsemantic = errorsemantic(A) + errorsemantic(B) (5) 

errorsemantic – The total Semantic Representations Learner square error, 
including all the trials. 

errorsemantic(A) – The Semantic Representations Learner square error, 
relevant only for trials where face “A” was chosen and rated. See details 
in eq. 5.1 

errorsemantic(B) - The Semantic Representations Learner square error, 
relevant only for trials where face “B” was chosen and rated. See details 
in eq. 5.2. 

errorsemantic(A) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

c=A

(

Ratesemantic(c) − (b0 + b1 • Qsemantic(c) )2

√
√
√
√ (5.1) 

Ratesemantic(c) – knowledge-focused self-reports of face “A” in trial t 
b0, b1- Scaling of the Q-Values to match the self–reports units of 

measurement 
Qsemantic(c) - Predicted Q-Value of face “A” in trial t 

errorsemantic(B) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

c=B

(

Ratesemantic(c) − (b0 + b1 • Qsemantic(c) )2

√
√
√
√ (5.2) 

Ratesemantic(c) – knowledge-focused self-reports of face “B” in trial t 
b0, b1- Scaling of the Q-Values to match the self–reports units of 

measurement 
Qsemantic(c) - Predicted Q-Value of face “B” in trial t 
We used a similar set of equations to fit the Affectitive Representations 

Learner Q-Learning process: 

erroraffective = erroraffective(A)+ erroraffective(B) (6) 

erroraffective – The total Affective Representations Learner square error, 
including all the trials. 

erroraffective(A) – The Affective Representations Learner square error, 
relevant only for trials where face “A” was chosen and rated. See details 
in eq. 6.1 

erroraffective(B) - The Affective Representations Learner square error, 
relevant only for trials where face “B” was chosen and rated. See details 
in eq. 6.2. 

erroraffective(A) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

c=A

(

Rateaffective(c) −
(
b0 + b1 • Qaffective(c)

)2

√
√
√
√ (6.1) 

Rateaffective(c) – feeling -focused self-report of face “A” in trial t 
b0, b1- Scaling of the Q-Values to match the self–report units of 

measurement 
Qaffective(c) - Predicted Q-Value of face “A” in trial t 

erroraffective(B) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

c=B

(

Rateaffective(c) −
(
b0 + b1 • Qaffective(c)

)2

√
√
√
√ (6.2) 

Rateaffective(c) – feeling -focused self-report of face “B” in trial t 
b0, b1- Scaling of the Q-Values to match the self–report units of 

measurement 
Qaffective(c) - Predicted Q-Value of face “B” in trial t 
The resulting parameters from each Q-Learning process are alpha, b0, 

and b1 for each participant. In addition, these Q-Learning processes 
result in estimated trial-by-trial Q-Values and prediction errors for each 
participant, which could be later used to directly compare the two 
competing learning frameworks (see section 2.1.6.2.4). 

2.1.6.2.3. Pre-processing. We used self-rating Z scores in eqs. (5) and 
(6). As we fitted the Q-Learning algorithms for each participant sepa
rately, we calculated the Z scores based on all the knowledge-focused (or 
feeling-focused) self-reports given by this specific participant to both 
faces (i.e., 80 trials = 80 observations for each valence type). 

2.1.6.2.4. Frameworks comparison. To decide which of the two 
conceptual learning frameworks, the Common Accumulation framework 
or the Parallel Accumulation framework, best fit our data, we systemat
ically run a series of mixed effects regression models with the affective 
(/semantic) valence self-reports as the dependent variable. We used 
group-level coefficients (fixed effects) to model population-level effects 
and individual-level coefficients (random effects) to capture average 
individual responses (Gelman & Hill, 2006). We report standardized 
coefficients, which represent the partial correlation between the 
dependent and independent variables and are, therefore, indicators of 
effect size. We compared the model fitting scores BIC and AIC between 
the models using ANOVA (BIC-Bayesian information criterion, Schwarz, 
1978; AIC - Akaike information criterion, Akaike, 1974). 

In the case of explaining the feeling-focused self-reports, the 
competing candidates for independent variables in the mixed effects 
regression models were: 1) the Q-Values from the Choice Learner process, 
2) the prediction errors from the Choice Learner process, 3) the Q-Values 
from the Affective Representations Learner process, 4) the prediction er
rors from the Affective Representations Learner process. Notably, all the 
above variables were used as both fixed and random effects. Suppose the 
Common Accumulation framework best fits our data. In that case, we 
expect the best regression model will include either the prediction errors 
or the Q-Values from the only Q-Learning process under this framework, 
i.e., the Choice Learner process (Fig. 1.A). If, on the other hand, the 
Parallel Accumulation framework best fits our data, we expect the best 
mixed regression model will include the Q-Values from the Affective 
Representations Learner process (Fig. 1.B). 

We repeated the process when explaining the knowledge-focused 
self-reports. We used the same variables from the Choice Learner pro
cess mentioned above. However, this time we replaced the variables 
from the Affective Representations Learner process with their parallels in 
the Semantic Representations Learner process. Our prediction for the best 
variable under the Common Accumulation framework is either the Q- 
Values or the prediction errors from the only Q-Learning process under 
this framework, i.e., the Choice Learner process. If, on the other hand, the 
Parallel Accumulation framework best fits our data, we expect the best 
regression model will include the Q-Values from the Semantic Repre
sentations Learner process. 
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2.2. Results 

2.2.1. Exclusion criteria 
We commenced the analysis by screening the data and excluding 

seven participants who failed to show a sufficient learning pattern, i.e., 
their percentage of free choices of the profitable face (face “A”) during 
the second half of the acquisition phase was below the chance level 
(50%). Next, we checked the quality of the self-reports given by the 
participants. Based on the dynamic nature of our task, we expected to 
find variability in the self-reports related to each face in each phase. We 
defined 16 clusters of self-reports (4 scales [semantic, feelings, positive, 
negative] * 2 phases [Acquisition, Reversal] * 2 CS [Face A, Face B]), 
and calculated the variance in each of the defined clusters for each 
participant. We excluded 2 participants who exhibited low variability, i. 
e., zero variance in >20% of the clusters. Altogether, we excluded 9 
participants, i.e., we were left with a final sample of 35 participants. 
Notably, we repeated the primary analysis presented below of 
comparing the learning rates of the two types of valence without 
exclusion of any participants and received similar results (See supple
mentary file section C for details). 

2.2.2. Block-to-block trends of the main variables 
As can be seen in Fig. 3.A, on average, the participants learned to 

choose the preferred option in each phase (option A in the acquisition 
phase and option B in the reversal phase), as seen by the choices trends. 
In addition, the participants’ self-reports of the preferred option in each 
phase were more positive than their self-reports for the unpreferred 
option. The affective valence self-reports were updated faster than the 
semantic ones during the acquisition phase and after the reversal. 

2.2.3. Cross-correlation analysis 
The learning rate controls the correlation of past rewards with the 

current valence ratings. The higher the learning rate, the less correlation 
past rewards have with the current trial’s valence self-report. To illus
trate the difference between the reliance of the two types of valence on 
reward history, we computed correlations between the current trial’s 
valence self-report and the history of rewards (USs) for the two types of 
valence. The correlation calculation was done on the individual partic
ipant’s level (N = 35) (see analysis strategy, section 2.1.6.1 for more 
details). As illustrated in Fig. 3.B, the correlation between the feeling- 
focused self-reports and past rewards weakens as the gap between the 
self-report and the time the reward has been presented increases. A 
comparison between the two extremes (0-lag cross-correlation and 3-lag 
cross-correlation) shows a significant drop between the 0-lag cross- 
correlation (M = 0.60, SD = 0.38) and the 3-lag cross-correlation (M 
= 0.45, SD = 0.32) (t(33) = 4.27, p < .001, d = 0.73).7 In contrast, the 
correlation between the knowledge-focused self-report and past rewards 
remains constant as the gap between the self-reports and the time the US 
has been presented increases (0-lag: M = 0.68, SD = 0.24, 3-lag: M =
0.69, SD = 0.22, t(34) = − 0.60, p = .55, d = − 0.1). 

2.2.4. Computational modeling 

2.2.4.1. Frameworks comparison. We fitted the three Q-Learning pro
cesses (i.e., the Choice Learner, the Affective Representations Learner, and 
the Semantic Representations Learner) to the trial-by-trial choices and 
ratings of the 35 participants. The fitting procedure, detailed in section 
2.1.6.2, resulted in estimated parameters (i.e., learning rates for each Q- 
Learning process, rate of exploration (β), and scaling parameters (b0, 
b1)) for each participant. We also recovered the trial-by-trial Q-Values 
and prediction errors for each learning process and used them for the 
frameworks comparison, as detailed below. 

Table 1 summarizes the results of eight mixed effects regression 
models with the affective (/semantic) valence self-reports ratings as the 
dependent variable, as detailed in section 2.1.6.2.4. The best single 
variable to explain the feeling–focused self-reports is our prediction for 
the best fit under the Parallel Accumulation framework, i.e., the Q-Values 
from the Affective Representations Learner process. Under the Common 
Accumulation framework, the best-explaining variable is the Q -Values of 
the Choice Learner process. Notably, the gap in AIC/BIC terms between 
the Q -Values from the Affective Representations Learner process and the Q 
-Values from the Choice Learner process is only 2%. This difference can 
be attributed to the fact that the Affective Representations Learner was 
directly fitted to the feeling–focused self-reports. In contrast, the Choice 
Learner was fitted to the choices. For full details of the models, see 
supplementary tables D.1 to D.4. 

The best single variable to explain the knowledge–focused self- 
reports is again our prediction for the best fit under the Parallel Accu
mulation framework, i.e., the Q-Values from the Semantic Representations 
Learner process. Under the Common Accumulation framework, the best- 
explaining variable is again the Q-Values from the Choice Learner pro
cess. The gap in AIC/BIC terms between the Q -Values from the Semantic 
Representations Learner process and the Q -Values from the Choice Learner 
is 4%. As in the case of the feeling-focused self-reports, this difference 
can be attributed to the fact that the Semantic Representations Learner was 
directly fitted to the knowledge–focused self-reports. For full details of 
the models, see supplementary tables D.5 to D.8. 

In summary, the differences between the frameworks are minor and 
can be attributed to the direct fit of the self-reports to the learning 
processes in the Parallel Accumulation framework. However, it should be 
noted that the Common Accumulation framework indicated that both 
types of self-reports are based on the same component of the Choice 
Learner process, i.e., its Q-Values, and therefore should be the same. This 
result contradicts our data that shows differences between the knowl
edge–focused and feeling–focused self–reports in both the block-to- 
block trends and the cross-correlation analysis. Therefore, we 
concluded that the Parallel Accumulation framework received more 
support from our data and chose it as the framework we adopted for the 
learning rates comparison detailed below. 

2.2.4.2. Comparing the learning rates of the semantic and affective 
valence. We moved to check whether the learning rate of the affective 
valence differs from the learning rate of the semantic valence under the 
framework of Parallel Accumulation. To this end, we compared the 
estimated alpha parameters (i.e., the learning rate) derived from the 
Affective Representations Learner Q-Learning process and the Semantic 
Representations Learner Q-Learning process. We found that the estimated 
alpha from Affective Representations Learner (M = 0.48, SD = 0.32) is 
higher than the estimated alpha from the Semantic Representations 
Learner (M = 0.28, SD = 0.19), and this difference is statistically sig
nificant (t(34) = − 3.39, p = .002, d = − 0.57). (see Fig. 3.C and sup
porting bayesian inference in supplementary fig. 4).8,9 We also 
conducted this analysis without excluding participants and found 
similar effects. See Supplementary file section C for details. 

7 One of the participants was omitted because she has zero variance in the 
feeling-focused self- reports. 

8 For additional information on the results of the Q-Learning processes see 
supplementary table 3.  

9 We have checked the possibility that a Q-Learnig process with two learning 
rates, one connected to positive prediction error and one to negative prediction 
error, is a better fit for our data. We used the BIC criteria (Schwarz, 1978). The 
results show that a Q-Learning process with two learning rates does not over
perform a Q-Learning process with one learning rate in both experiments. 
Therefore, we did not adopt this alternative. For the analysis, see supplemen
tary table 4. 
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Fig. 3. Experiment 1 results. 3.A. Block-to-block trends of the main variables. On average, the participants learned to choose the preferred option in each phase 
(option A in the acquisition phase and option B in the reversal phase), as seen by the choices trends (grey line). The dotted horizontal grey line indicates the chance 
level (50%). In addition, the participants’ self-reports of the preferred option in each phase were more positive than their self-reports for the unpreferred option. The 
affective valence self-reports were updated faster than the semantic ones during the acquisition phase and after the reversal. 3.B. The correlation between the af
fective valence self-report and past rewards (i.e., USs) weakens as the gap between the self-report and the time the US has been presented increases. In contrast, the 
correlation between the semantic valence self-report and past rewards remains constant as the gap between the self-reports and the time the US has been presented 
increases. 3.C. the learning rate (alpha) of the Affective Representations Q-Learning process is significantly higher than the learning rate of the Semantic Repre
sentations Q-Learning process. The alpha distribution of the Choices Q-Learning process is more similar to that of the Semantic Representations Q-Learning process 
than of the Affective Representations Q-Learning process. 

Table 1 
The results of the mixed effects regressions in Experiment No. 1. 
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2.3. Discussion 

In experiment 1, we examined the effect of the expected (variability 
of rewards) and unexpected (reversal) uncertainty in the rewards on the 
affective and semantic valence learning processes and directly compared 
their temporal dynamics. As already apparent from the block-by-block 
dynamics of the two types of valence (Fig. 3.A), the affective valence 
ratings were updated faster than the semantic valence ratings and the 
choices. The different trend of correlations between current valence 
self–reports and the past US of the two types of valence gives the 
block–by–block descriptive result further support (Fig. 3.B). As reported 
above, the strength of the correlation between the current valence rat
ings and the short-term history of rewards declines in the case of the 
affective valence but not in the case of the semantic valence. This dif
ference in correlations, which implies the higher weight given by the 
semantic valence to past events, converges with the slower adjustment 
of the semantic valence manifested in the block–by–block trends. 

To formally analyze the differences between the two types of valence 
learning rates, we fitted three Q-Learning algorithms to the participant’s 
trial-by-trial data: the Choice Learner, the Affective Representations 
Learner, and the Semantic Representations Learner. We then checked 
which of the two conceptual frameworks for learning best fit our data – 
the Common Accumulation framework or the Parallel Accumulation 
framework. We found that the Parallel Accumulation framework, which 
assumes a separate accumulation process for each type of valence, is a 
better fit for our data and proceeded under this framework. 

Finally, we found that the estimated learning rate of the Affective 
Representations Learner process is significantly higher than the learning 
rate of the Semantic Representations Learner process and the Choice 
Learner process. The higher learning rate of the affective valence 
compared to the semantic valence (Fig. 3.C) implies that the affective 
valence representation adjustment process gives more weight to the 
short-term history of events, at the expense of its weight in the long
–term history of events. In contrast, the semantic valence representation 
adjustment process gives more weight to the long-term history of events 
at the expense of the importance it gives to the short–term history of 
events. This difference in the adjustment dynamics of the two types of 
valence causes the faster affective valence adjustment than the adjust
ment of the semantic valence. 

Notably, the lower learning rate of the semantic valence found in the 
first experiment may depend on this experiment’s specific reward 
environment, i.e., the expected uncertainty caused by the variability of 
rewards connected to a specific CS. This variability causes a difference 
between the accumulated knowledge on the CS value based on different 
time windows (e.g., one trial back versus five trials back). This state 
results in a lack of accuracy of the CS predicted value and delayed sta
bility in predictions. One way to mitigate these adverse effects of vari
ability on the learning process is to consider the long-term history of 
events, i.e., use a low learning rate. Indeed, Preuschoff and Bossaerts 
(2007) and Diederen and Schultz (2015) show that in cases that involve 
expected variability, it is advantageous to adjust the prediction error 
based on the expected variability in rewards. The higher the variability 
the smaller the prediction error, and vice versa. This adjustment is 
computationally translated to a lower leaning rate the higher the vari
ability of the rewards. The results of experiment 1 may suggest that the 
semantic valence representation attempted to address the expected (and 
unexpected) uncertainty in the environment by lowering the learning 
rate and smoothing out the trial-by-trial fluctuations in the rewards. In 
contrast, these fluctuations influenced the affective valence represen
tation more strongly. 

3. Experiment 2 

In experiment 2, we aimed to check whether the difference between 
the learning rates of the affective and semantic valence representations 
stems from the expected variability in the rewards that were part of the 

design of experiment 1. To this end, we deliberately manipulated the 
variability of the reward schedule as a between participants’ condition 
(see Supplementary Table 2). One group of participants, allocated to the 
“Variable rewards” condition, replicated experiment 1. During the 
acquisition phase (first 30 trials), choosing face “A” yielded an average 
profit of 10 points.10 However, the actual points varied from 5 to 15, and 
selecting face “B” yielded an average of 0 points, but actual points varied 
from − 5 to 5. The other group of participants, allocated to the “Fixed 
rewards” condition, experienced a highly predictive environment with 
no expected uncertainty, i.e., during the acquisition phase choosing face 
“A” yielded a fixed loss of 5 points and selecting face “B” yielded a fixed 
gain of 1 point. The contingencies in both groups, the Variable rewards 
condition and the Fixed reward condition, were reversed during the 
reversal phase (last 30 trials), as in the original experiment. 

3.1. Method and material 

Experiment 2 replicated and extended experiment 1 using the 
internet platform. Below, we will elaborate only on the differences 
relative to the first experiment. 

3.1.1. Participants 
For the second experiment, we recruited 109 participants from 

English-speaking countries (mainly the UK), using the Prolific platform 
[43 male, aged 34.3 ± 10.2 (mean ± SD); 66 female, aged 24.0 ± 11.2]. 
The study was approved by the University of Haifa’s Faculty of Social 
Sciences Research Ethics Committee (Project ID Number: 318/18). All 
participants were screened for learning disabilities and attention defi
cits. Participants received GBP 8 for their participation. In addition, the 
participants received a bonus of up to GBP 3, depending on the points 
they received in 2 randomly selected trials and a fixed initial allocation 
of points. The average bonus was about 1.8 pounds. As elaborated in 
section 2.2.1 (Exclusion criteria), we excluded 29 participants from the 
study due to lack of learning (5 participants) or lack of sufficient vari
ance in their self-report ratings (24 participants). The final sample size 
for the analysis was n = 80, which was randomly allocated to the two 
conditions, the Variable rewards condition and the Fixed rewards con
dition, i.e., n = 40 in each condition. The two final samples did not 
significantly differ in their demographic characteristics (i.e., mean age, 
percentage of females). Notably, we repeated the primary analysis 
presented below of comparing the learning rates of the two types of 
valence without exclusion of any participants and received similar re
sults (See supplementary file section C for details). 

3.2. Results 

3.2.1. Cross-correlation analysis 
Similar to the analysis performed in experiment 1 (section 2.2.3), we 

computed correlations between the current trial’s valence self-report 
and the history of rewards (USs) for the two types of valence. The cor
relation calculations for each condition (i.e., Variable or Fixed rewards) 
in each time point (i.e., 0-lag, 1-lag, 2-lag, and 3-lag) were done on the 
individual participant’s level, resulting in a distribution of 40 correla
tions. Each of these correlations was based on the correlation between 
60 ratings and rewards related to a specific participant at a specific time. 
We then conducted a Fisher’s Z transformation on the correlations. 

As illustrated in Fig. 4.A, in the Variable rewards condition, the 
correlations between the feeling-focused self-reports and past rewards 
weakened as the disparity between the self-report and the time the 
reward was presented increased. A comparison between the two ex
tremes (0-lag cross-correlation and 3-lag cross-correlation) showed a 
significant drop between the 0-lag cross-correlation (M = 0.83, SD =

10 The participants were informed in advance that the task points would be 
converted to pounds at a ratio of 1 point equals 0.075 pounds. 
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0.38) and the 3-lag cross-correlation (M = 0.58, SD = 0.21) (t(39) = 5.1, 
p < .0001, d = 0.80). The correlation between the knowledge-focused 
self-reports and the rewards also decreased as the disparity between 
the self-reports and the time the rewards were presented increased, but 
to a lesser extent. A comparison between the 0-lag cross-correlation (M 
= 0.77, SD = 0.28) and 3-lag cross-correlation (M = 0.68, SD = 0.20) 
showed a significant drop (t(39) = 2.39, p = .02, d = 0.38). 

In the Fixed rewards condition, the two types of valence showed a 
similar pattern. As illustrated in Fig. 4.B, the Pearson correlation be
tween the feeling-focused self-reports and the rewards weakened as the 
gap between the self-report and the time in which the rewards were 
presented increased. A comparison between the 0-lag cross-correlation 
(M = 1.30, SD = 0.47) and 3-lag cross-correlation (M = 0.76, SD =
0.24) showed a significant drop (t(39) = 8.24, p < .0001, d = 1.30). The 
correlation between the knowledge-focused self-reports and the rewards 
also weakened as the disparity between the self-reports and the time in 
which the rewards were presented increased. A comparison between the 
0-lag cross-correlation (M = 1.47, SD = 0.38) and 3-lag cross-correlation 
(M = 0.92, SD = 0.21) showed a significant drop (t(39) = 10.30, p <
.0001, d = 1.63). 

3.2.2. Computational modeling 

3.2.2.1. Frameworks comparison – Variable rewards condition (repli
cation). As detailed in the analysis of experiment 1 (see section 2.2.4.1), 
we started by fitting the three Q-Learning processes (i.e., the Choice 

Learner, the Affective Representations Learner, and the Semantic Repre
sentations Learner) to the trial-by-trial choices and ratings of the 40 
participants. We obtained estimated parameters (e.g., learning rates) for 
each participant. We also recovered the trial-by-trial Q-Values and 
prediction errors for each learning process and used them for the 
frameworks comparison, as detailed below. 

Table 2 below summarizes the results of eight mixed effects regres
sion models with the affective (/semantic) valence self-reports ratings as 
the dependent variable for the Variable rewards condition. As in 
experiment 1, the best single variable to explain the feeling–focused self- 
reports is the Q-Values from the Affective Representations Learner process, 
which is our prediction to best fit under the Parallel Accumulation 
framework. Under the Common Accumulation framework, the best- 
explaining variable is the Q -Values of the Choice Learner process. 
Notably, the gap in AIC/BIC terms between the Q -Values from the Af
fective Representations Learner process and the Q -Values from the Choice 
Learner process is 5%. As in experiment 1, this difference can be 
attributed to the Affective Representations Learner being directly fitted 
to the feeling–focused self-reports. In contrast, the Choice Learner was 
fitted to the choices. For full details of the models, see supplementary 
tables D.9 to D.12. 

The best single variable to explain the knowledge–focused self- 
reports is, again, like in experiment 1, our prediction for the best fit 
under the Parallel Accumulation framework, i.e., the Q-Values from the 
Semantic Representations Learner process. Under the Common Accumula
tion framework, the best-explaining variable is again the Q-Values from 
the Choice Learner process. The gap in AIC/BIC terms between the Q 

Fig. 4. Experiment 2 results. 4.A. Variable rewards condition (replication of experiment 1). The correlation between the affective valence self-report and the rewards 
(USs) weakens as the gap between the self-report and the time the US has been presented increases. The correlation between the semantic valence self-report and the 
US also weakens but to a lesser extent. 4.B Fixed rewards condition. The two types of self-report show a similar pattern of a weakening correlation between the self- 
reports and the US, as the gap between the self-report and the time the US was presented increased. 4.C Similar to the results of experiment 1, in the variable reward 
condition (replication) the alpha of the Affective Representations Q-Learning process is significantly higher than the alpha of the Semantic Representations Q- 
Learning process. In contrast, the alpha of the Affective Representations Q-Learning process in the Fixed rewards condition is not significantly different from the 
alpha of the Semantic Representations Q-Learning process. 
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-Values from the Semantic Representations Learner and the Q -Values from 
the Choice Learner is 7%. This result gives some support to the Parallel 
Accumulation framework. For full details of the models, see supple
mentary tables D.13 to D.16. 

In summary, like in experiment 1, the differences between the 
frameworks are minor and can be at least partly attributed to the direct 
fit of the self-reports to the learning processes in the Parallel Accumu
lation framework. However, it should be noted that again the Common 
Accumulation framework indicated that both types of self-reports are 
based on the same component of the Choice Learner process, i.e., its Q- 
Values, and therefore should be the same. As in experiment 1, this result 
contradicts our data that shows differences between the knowledge
–focused and feeling–focused self–reports in both the block-to-block 
trends and the cross-correlation analysis. Therefore, we concluded that 
the Parallel Accumulation framework received more support from our 
data and chose it as the framework we adopted for the learning rates 
comparison detailed below. 

3.2.2.2. Frameworks comparison – Fixed rewards condition. We repeated 

the frameworks comparison process above detailed, this time to the 
Fixed rewards condition data. The results are summarized in Table 3 
below. As in experiment 1 and the Variable rewards condition of 
experiment 2, the best single variable to explain the feeling–focused self- 
reports is our prediction for the best fit under the Parallel Accumulation 
framework, i.e., the Q-Values from the Affective Representations Learner 
process. Under the Common Accumulation framework, the best- 
explaining variable is the Q -Values of the Choice Learner process. 
Notably, the gap in AIC/BIC terms between the Q -Values from the Af
fective Representations Learner process and the Q -Values from the Choice 
Learner process is 4%. As in experiment 1 and the Variable rewards 
condition of experiment 2, this difference can be attributed to the Af
fective Representations Learner being directly fitted to the feeling–focused 
self-reports. For full details of the models, see supplementary tables D.17 
to D.20. 

The best single variable to explain the knowledge–focused self- 
reports is, again, like in experiment 1 and the Variable rewards condi
tion of experiment 2, our prediction for the best fit under the Parallel 
Accumulation framework, i.e., the Q-Values from the Semantic 

Table 2 
The results of the mixed effects regressions in Experiment No. 2.a – Variable rewards. 

Table 3 
The results of the mixed effects regressions in Experiment No. 2.b – Fixed rewards. 
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Representations Learner process. Under the Common Accumulation 
framework, the best-explaining variable is again the Q-Values from the 
Choice Learner process. The gap in AIC/BIC terms between the Q -Values 
from the Semantic Representations Learner and the Q -Values from the 
Choice Learner is 9%. This result gives support to the Parallel Accumu
lation framework. For full details of the models, see supplementary ta
bles D.21 to D.24. 

In summary, in the Fixed rewards condition of experiment 2, as in 
experiment 1 and the Variable rewards condition of experiment 2, the 
Parallel Accumulation framework received more support. Again, the 
differences can be at least partly attributed to the direct fitting of the 
self-reports in the learning processes under the Parallel Accumulation 
framework. In addition, the Common Accumulation framework once 
again indicated that both types of self-reports are based on the same 
component of the Choice Learner process, i.e., its Q-Values, and therefore 
should be the same. Notably, this result does not contradict our data in 
the Fixed rewards case. Therefore, we conclude that both frameworks fit 
our data similarly. We decided to proceed under the Parallel Accumu
lation framework only to facilitate easy comparison to the Variable re
wards condition. The learning rates comparison below supports the fact 
that the two allegedly separate learning processes of the two types of 
valence representations can be combined in the Fixed condition. 

3.2.2.3. Comparing the learning rates of the semantic and affective 
valence. We moved to check whether the affective valence’s learning 
rate differs from the semantic valence’s learning rate under the Parallel 
Accumulation framework. To this end, we compared the estimated alpha 
parameters (i.e., the learning rate) derived from the Affective Represen
tations Learner and the Semantic Representations Learner processes. In the 
Variable rewards condition (replication of experiment 1) we found that 
the estimated alpha from the Affective Representations Learner process (M 
= 0.5, SD = 0.32) is higher than the estimated alpha from the Semantic 
Representations Learner process (M = 0.34, SD = 0.23), and this differ
ence is statistically significant (t(39) = − 2.92, p = .006, d = − 0.46) 
(also, see Fig. 4.C and supporting bayesian inference in supplementary 
fig. 5).11 In contrast, in the Fixed rewards condition we found that the 
estimated alpha from the Affective Representations Learner process (M =
0.6, SD = 0.28) is not different from the estimated alpha from the Se
mantic Representations Learner processes (M = 0.6, SD = 0.21) (t(39) =
− 0.02, n.s, see supporting bayesian inference in supplementary fig. 6). 
We also conducted this analysis without excluding participants and 
found similar effects. See Supplementary section C for details. 

Notably, the affective valence learning rate changed only marginally 
between the experiment’s two conditions, from an estimated mean 
alpha of 0.5 in the Variable reward condition (and 0.48 in experiment 1) 
to an estimated mean alpha of 0.6 in the Fixed rewards condition. In 
contrast, the move from the Variable reward condition to the Fixed re
wards condition strongly influenced the semantic valence. Its learning 
rate changed from an estimated mean alpha of 0.34 in the Variable 
reward condition (and 0.28 in experiment 1) to an estimated mean alpha 
of 0.6 in the Fixed rewards condition. This rise in the estimated mean 
alpha of the semantic valence in the Fixed reward condition closes the 
gap that exists between the two types of valence in the Variable reward 
condition. 

3.3. Discussion 

In experiment 2, we sought to directly examine the effect of the 
reward schedule’s variability (i.e., expected uncertainty) on the exis
tence of a difference between the temporal dynamics of the two types of 
valence. To this end, we deliberately manipulated the variability of the 
reinforcement schedule as a between participants’ condition. One group 

of participants, allocated to the Variable reward condition, replicated 
experiment 1, i.e., experienced expected uncertainty; the variability of 
rewards was connected to each CS in each phase. The other group, 
allocated to the Fixed reward condition, experienced a fixed rewards 
schedule connected to each CS during each phase, i.e., did not experi
ence expected uncertainty. Importantly, as in the design in experiment 
1, the two groups experienced unexpected variability (i.e., reversal). In 
addition, as in experiment 1, our analysis was done under the Parallel 
Accumulation framework, which assumes three parallel Q-Learning 
processes, one for the choices and an additional two for each type of 
valence representation. 

The results of the Variable rewards condition replicate experiment 1. 
In the less predictable environment of variability in the rewards 
schedule, the feeling-focused self-reports (i.e., affective valence) are 
updated faster than the knowledge-focused self-reports (i.e., semantic 
valence). This difference translates into a significantly higher affective 
valence learning rate than semantic valence learning rate. In contrast, in 
the highly predictable environment of the Fixed reward condition, the 
two types of valence have very similar temporal dynamics, manifested in 
their similar block–to–block patterns (Supplementary Fig. 3.B), corre
lations between current self-report and past rewards, and learning rates. 
Notably, as suggested by Preuschoff and Bossaerts (2007) and Diederen 
and Schultz (2015), the semantic valence representation mitigates the 
aversive effect of the unavoidable variability in the rewards (i.e., the 
expected uncertainty) on the learning process by scaling down the 
prediction error and by de facto lowering the learning rate. This miti
gation causes dissociation between the temporal dynamics of the two 
types of valence in the face of the variability in rewards: The affective 
valence representation undergoes a faster but less stable adjustment, 
whereas the semantic valence representation undergoes a slower but 
smoother adjustment. 

The difference between the variable and fixed rewards conditions is 
also reflected in the choice dynamics. Learning is easy and fast in the 
Fixed reward condition, a highly predictable environment. As a result, 
the participants learn to constantly choose the more profitable option 
relatively quickly, as displayed by the high learning rate. In contrast, 
learning is less trivial in the Variable rewards condition, resulting in the 
longer time it takes the participants to constantly choose the more 
profitable option. 

4. General discussion 

The current study investigated the temporal dynamics of affective 
and semantic representations of valence in a reversal-learning task. 
Experiment 1 implements a schedule of variable rewards; the partici
pants are exposed to both expected uncertainty (i.e., uncertainty in the 
rewards associated with each CS in each phase) and unexpected un
certainty, i.e., the reversal. We found that in this environment, the 
learning rate of the choices and the knowledge-focused self-reports is 
lower than the learning rate of the feeling-focused self-reports. In other 
words, we found that in an environment that contains both expected and 
unexpected uncertainty regarding rewards, the semantic valence rep
resentations of the CSs are updated at a slower pace than the affective 
valence representations of the CSs. 

In the second experiment, we implemented two conditions. The first 
is the Variable rewards condition in which, as in experiment 1, the 
participants experienced both expected and unexpected uncertainty. 
The second is the Fixed rewards condition, in which the participants 
experienced only unexpected uncertainty, i.e., a reversal. The results of 
the Variable rewards condition replicate experiment 1. In the presence 
of variability in the rewards schedule associated with each CS in each 
phase and a reversal, the learning rate of the choices and the knowledge- 
focused self-reports are lower than that of feeling–focused self–reports. 
In other words, we again found that in an environment that contains 
both expected and unexpected uncertainty regarding the rewards, the 
semantic valence representations of the CSs are updated at a slower pace 

11 For additional information on the results of the Q-Learning processes see 
supplementary table 3. 
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than the affective valence representations of the CSs. In contrast, in the 
Fixed rewards condition (i.e., only unexpected uncertainty, no expected 
uncertainty), there is no difference between the update pace, i.e., the 
learning rates of the two types of valence representations, as they are 
both relatively high. 

Notably, the difference between the results of the Variable and Fixed 
rewards conditions stems from the different effects of expected uncer
tainty on the learning rates of the two types of valence. The semantic 
valence responds to expected uncertainty by significantly decreasing its 
learning rate. On the other hand, the affective valence is only marginally 
lower with expected uncertainty. Combining the two different trends 
generates a discrepancy between the learning rates of the two types of 
valence in the Variable rewards (i.e., expected and unexpected uncer
tainty) condition that does not exist in the Fixed rewards condition (i.e., 
only unexpected uncertainty). We conclude that the semantic valence 
representations for the CSs are updated slower than the affective valence 
representations of the CSs, i.e., they have a lower learning rate only in an 
environment that contains expected uncertainty. 

A valid question is why expected uncertainty might lower the 
learning rate, as we primarily found in the case of the semantic valence 
representation. To answer this question, we should first recall that ex
pected uncertainty is the uncertainty in rewards attributable to the 
inherent variability of the given phenomenon. Therefore, if there is 
expected uncertainty, the current reward is not exactly identical to the 
reward in the last trial and the reward two trials ago. In other words, if 
there is expected uncertainty, the history of rewards is informative 
because it is not exactly like the current reward. On the other hand, no 
expected uncertainty means that the history of rewards is far less 
informative because the current reward is the same as the last trial’s 
reward and the same as the reward two trials ago. Let us now recall that 
the learning rate controls the weight given to the long-term reward 
history versus the current reward in determining the CS’s valence. The 
higher the learning rate, the less weight given to the long-term reward 
history and the more weight given to the current reward. As explained 
above, if there is no expected uncertainty, the long-term reward history 
is far less informative. Therefore, both types of valence representations 
can adopt a relatively high learning rate, primarily relying on the cur
rent reward and not on the long-term reward history. On the other hand, 
if there is expected uncertainty, the long-term reward history is infor
mative. In this case, adopting a high learning rate means that the current 
reward, with its inherited fluctuations, will significantly influence the 
CS’s value, causing the adaptation process to be faster but more volatile. 
In contrast, adopting a low learning rate means that the long-term 
reward history and not the current reward will primarily influence the 
CS’s value, causing the adaptation process to be slower but more stable 
(/smoother). We found that in the face of expected uncertainty, the 
semantic valence representation (and the choices) preferred adopting a 
lower learning rate than the affective valence representation, causing a 
slower but smoother adaptation process of the semantic valence repre
sentation than the affective valence representation. 

Our results support the dissociation between the semantic and af
fective representations of valence. This finding has implications for 
several fields of knowledge. First, for basic emotion research. We found 
additional empirical evidence for a dissociation between the two 
valence systems that are usually connected and treated in the literature 
as one construct. The de facto treatment of affective and semantic rep
resentations of valence as a monolithic structure stems from the chal
lenge of dissociating them. It creates unfavorable consequences for basic 
emotion theory and empirical work. For example, it can lead to misuse 
of self–reports and tasks, e.g., using “affective” self-reports that reflect 
semantic evaluation; using “affective” tasks that reflect semantic com
ponents (see Itkes & Kron, 2019, for a review). The dissociation between 
the two types of valence in the face of expected uncertainty, i.e., the 
variability of rewards, contributes to our understanding of the difference 
between affective and semantic valence representations. The semantic 
valence representation focuses more on the long-term history of events, 

whereas the affective valence representation focuses more on current 
events. 

A second implication is contributing to learning theories by consid
ering semantic and affective learning simultaneously. The lion’s share of 
the existing literature on associative learning deals with either value- 
based learning, i.e., learning about the semantic valence of a stimulus 
(e.g., Boldt, Blundell, & De Martino, 2019; Daw, Gershman, Seymour, 
Dayan, & Dolan, 2011; Hertz et al., 2018) or learning about the affective 
valence of a stimulus, i.e., fear conditioning (e.g., Atlas et al., 2016; 
Mertens & De Houwer, 2016; Schiller et al., 2008). We extended pre
vious work by considering semantic valence, affective valence, and 
choices simultaneously. To achieve this goal, we first checked which 
conceptual learning framework best fit our data by formally comparing 
two frameworks. According to the first framework, there is a single 
learning process with a single learning rate. The affective and semantic 
valence representations are based on the read-out of latent variables of 
this learning process. According to the second framework, there are 
three parallel accumulation processes, one for the choices and one for 
each type of valence representation, i.e., the same schedule of rewards 
(US) is used to create two different representations of the CS’ valence, 
one of the semantic valence of the CS and one of the affective valence of 
the CS. 

The Parallel Accumulation framework demonstrated a minor to 
moderate advantage in both experiments over the Common Accumulation 
framework. This advantage can be at least partly attributed to the direct 
fit of each type of self-report to a dedicated learning process, whereas 
the common accumulation model was fit to the choices. However, we 
predicted that the Common Accumulation framework could capture dif
ferences between semantic and affective ratings by linking the ratings to 
different variables – affective to prediction error and semantic to Q- 
values or vice-versa. Our results indicated that the prediction errors did 
not contribute much to the ratings made by participants, therefore 
rejecting a fundamental assumption in the common accumulator 
framework. As it stands, this framework indicated that both types of self- 
reports are based on the same component of the Choice Learner process, i. 
e., its Q-Values, and therefore should be the same. This result contradicts 
our data in experiment 1 and the variable rewards condition of experi
ment 2, which shows differences between the knowledge–focused and 
feeling–focused self–reports in both the block-to-block trends and the 
cross-correlation analysis. Therefore, we concluded that the Parallel 
Accumulation framework provided a more meaningful description of our 
results, even though it is more elaborate than the common accumulator 
farmework. We then directly compared the two types of valence 
learning processes under this framework, using the same Q-Learning 
algorithm for the two types of valence. It should be noted that future 
works using different experimental designs and reward patterns may be 
able to link ratings with the prediction error variable better. 

Notably, our results support Preuschoff and Bossaerts (2007) and 
Diederen and Schultz (2015). They claim that in cases that involve 
variability in rewards, it is advantageous to adjust the prediction error 
based on the expected variability in rewards. The higher the variability, 
the smaller the prediction error and vice versa. This adjustment is 
computationally translated to a lower learning rate the higher the 
variability of the rewards. Indeed, our results show that in the face of 
variability in rewards, the semantic valence representation (and the 
choices) preferred adopting a low learning rate, causing a slower but 
smoother adaptation process. 

Finally, our results have a potential contribution to research on affect 
and emotion in decision-making (for reviews, see Lerner, Li, Valdesolo, 
& Kassam, 2015, and Phelps, Lempert, & Sokol-Hessner, 2014). It is 
interesting to look at the connection between the valence representa
tions’ temporal dynamics and the temporal dynamics of choices, i.e., the 
decisions made by the participants. Our results are limited in providing a 
direct comparison between the learning rates estimated from the choices 
Q-Learning algorithm (i.e., the Choice Learner) and the learning rates 
estimated from the affective and semantic valence representations Q- 
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Learning algorithms (i.e., the Affective Representations Learner and the 
Semantic Representations Learner) due to the different error terms in these 
Q-Learning algorithms. Nevertheless, the descriptive block-by-block 
trends (see Fig. 3.A) and the learning rates (see Fig. 3.C and Fig. 4.C) 
imply that the choices’ dynamics might be more similar to the semantic 
than to the affective valence dynamics. Therefore, we can speculate that 
the participants possibly relied more on semantic valence representation 
than on affective valence representation when making their decisions. 
Future research may wish to use the paradigm of associative learning to 
investigate the effect of different types of valence representations on 
decision-making. 

Our primary finding, i.e., the faster adaptation of the emotional 
valence representation in volatile, complex environments, also resonates 
with the Somatic Marker Hypothesis (SMH) (Damasio, Tranel, & Dam
asio, 1991; Damasio, 1996; for critical review see Dunn, Dalgleish, & 
Lawrence, 2006). The hypothesis claims that emotion-based biasing 
signals affect decision-making in complex situations. These signals 
indicate our emotional reaction to the response option and are inte
grated into higher brain regions, particularly the ventromedial pre
frontal cortex (VMPFC) (Bechara, Damasio, Damasio, & Anderson, 
1994). In particular connection to the current study, Bechara and his 
colleagues suggest that explicit reasoning in cases that involve uncer
tainty is preceded by rapidly formed emotional-based nonconscious 
biasing that supports declarative knowledge and advantageous behavior 
(Bechara et al., 1997). 

On this point, it is essential to distinguish between the basic as
sumptions adopted in this study and those adopted by the SMH and 
similar theories (e.g., Loewenstein, Hsee, Weber, & Welch, 2001; 
Zajonc, 1980). These theories consider emotions’ output for decision- 
making as a heuristic, unconscious process that gives a quick but less 
accurate evaluation of the alternatives (i.e., affect heuristics view). We 
checked whether our data support such a fundamental difference be
tween the affective valence representation and the semantic valence 
representation, i.e., is the affective valence representation based on 
prediction errors and the semantic valence representation based on 
accumulated knowledge (Q-Values). Despite the attractiveness of a 
parsimonious single learning process with different read-outs, our data 
supported the parallel Accumulation framework, which assumes three 
parallel accumulation processes, one for the choices and one for each 
type of valence representation. Under this framework, feelings, the 
conscious part of emotions, are not fundamentally different from se
mantic knowledge as an output for decision-making. Therefore, we 
modeled the two types of valence representations, the semantic and the 
affective, using the same formulation. Furthermore, note that in our 
design, affective valence is measured using feeling self-reports. The 
participants had to be aware of their feelings to report them, and 
consequently, the emotional contribution to the decision-making pro
cess had to be conscious. To conclude, our methodology and results 
support the view of the affective and semantic valence representations 
as two unique and interactive contributions to the decision-making 
process, similar to the conclusions of Quartz (2009) and Heffner, Son, 
and Feldmanhall’s (2021). 

One potential limitation of our studies is using neutral human faces 
as the CSs. Human subjects have a congenital tendency to develop 
emotions toward human faces (Grossmann, 2015). Therefore, the results 
of the experiments cannot be automatically generalized to other stimuli. 
Future research should use generic objects such as colored blocks as 
stimuli. More importantly, our dissociation results between the two 
types of valence representation in the case of variability of rewards stem 
from an investigation of only two conditions. In one condition, the re
wards were fixed; in the other, the rewards were variable. Future 
research should seek to extend the analysis and uncover a more general 
functional connection between the variability of rewards and the dif
ference between the learning rates of the two valence representations by 
systematically controlling the learning task’s level of variability and 
examining the resulting difference between the two valence 

representations. Finally, our current findings supported a parallel ac
cumulators framework, mainly because the prediction error variable 
seems not to play a significant role in predicting participants’ ratings, 
resulting in two independent processes of information accumulation. 
Future works may use other experimental designs or neuroimaging 
techniques to track these separate processes and their neural basis and 
establish their independence. 

To conclude, the current study provides direct evidence for the ex
istence of two different learning processes of a stimulus’ valence in an 
unstable rewards environment. In the face of variability, the semantic 
knowledge about the stimulus valence, i.e., the semantic valence rep
resentation, smooths the fluctuations in the rewards by updating slower 
than the valence of the affective response to the same stimulus, i.e., the 
affective valence representation. This finding supports past evidence for 
the existence of two different representations of a stimulus’ valence. It 
also strengthens the need to distinguish between their unique effect on 
behavior in future research. 
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